
x265

Jan 10, 2020

Contents

1 Introduction 1
1.1 About HEVC . 1
1.2 About x265 . 1
1.3 LEGAL NOTICES . 2

2 Command Line Options 3
2.1 Executable Options . 3
2.2 Logging/Statistic Options . 4
2.3 Performance Options . 6
2.4 Input/Output File Options . 9
2.5 Profile, Level, Tier . 10
2.6 Mode decision / Analysis . 12
2.7 Temporal / motion search options . 18
2.8 Spatial/intra options . 19
2.9 Psycho-visual options . 19
2.10 Slice decision options . 20
2.11 Quality, rate control and rate distortion options . 22
2.12 Quantization Options . 26
2.13 Loop filters . 27
2.14 VUI (Video Usability Information) options . 28
2.15 Bitstream options . 32
2.16 DCT Approximations . 33
2.17 Debugging options . 34
2.18 SVT-HEVC Encoder Options . 34

3 Application Programming Interface 37
3.1 Introduction . 37
3.2 Build Considerations . 37
3.3 Encoder . 38
3.4 Param . 38
3.5 Pictures . 41
3.6 Analysis Buffers . 42
3.7 Encode Process . 42
3.8 Cleanup . 43
3.9 VMAF (Video Multi-Method Assessment Fusion) . 43
3.10 Multi-library Interface . 44

i

4 Threading 47
4.1 Thread Pools . 47
4.2 Wavefront Parallel Processing . 47
4.3 Bonded Task Groups . 48
4.4 Frame Threading . 49
4.5 Lookahead . 50
4.6 SAO . 50

5 Preset Options 51
5.1 Presets . 51
5.2 Tuning . 52

6 Lossless 55
6.1 Lossless Encoding . 55
6.2 Near-lossless Encoding . 56
6.3 Transform Skip . 58

7 SVT-HEVC 59
7.1 Build Steps . 59
7.2 CLI options Mapping . 60
7.3 Preset & Tune Options Mapping . 61

8 Release Notes 63
8.1 Version 3.1 . 63
8.2 Version 3.0 . 64
8.3 Version 2.9 . 65
8.4 Version 2.8 . 65
8.5 Version 2.7 . 66
8.6 Version 2.6 . 67
8.7 Version 2.5 . 68
8.8 Version 2.4 . 69
8.9 Version 2.3 . 70
8.10 Version 2.2 . 70
8.11 Version 2.1 . 71
8.12 Version 2.0 . 72
8.13 Version 1.9 . 72
8.14 Version 1.8 . 73

Index 75

ii

CHAPTER 1

Introduction

Increasing demand for high definition and ultra-high definition video, along with an increasing desire for video on
demand has led to exponential growth in demand for bandwidth and storage requirements. These challenges can be
met by the new High Efficiency Video Coding (HEVC) standard, also known as H.265. The x265 HEVC encoder
project was launched by MulticoreWare in 2013, aiming to provide the most efficient, highest performance HEVC
video encoder.

1.1 About HEVC

The High Efficiency Video Coding (HEVC) was developed by the ISO/IEC Moving Picture Experts Group (MPEG)
and ITU-T Video Coding Experts Group (VCEG), through their Joint Collaborative Team on Video Coding (JCT-VC).
HEVC is also known as ISO/IEC 23008-2 MPEG-H Part 2 and ITU-T H.265. HEVC provides superior video quality
and up to twice the data compression as the previous standard (H.264/MPEG-4 AVC). HEVC can support 8K Ultra
High Definition video, with a picture size up to 8192x4320 pixels.

1.2 About x265

The primary objective of x265 is to become the best H.265/HEVC encoder available anywhere, offering the highest
compression efficiency and the highest performance on a wide variety of hardware platforms. The x265 encoder is
available as an open source library, published under the GPLv2 license. It is also available under a commercial license,
enabling commercial companies to utilize and distribute x265 in their solutions without being subject to the restrictions
of the GPL license.

x265 is developed by MulticoreWare, leaders in high performance software solutions, with backing from leading video
technology providers including Telestream and Doremi Labs (and other companies who want to remain anonymous
at this time), and with contributions from open source developers. x265 leverages many of the outstanding video
encoding features and optimizations from the x264 AVC encoder project.

The x265 software is available for free under the GNU GPL 2 license, from https://bitbucket.org/multicoreware/x265.
For commercial companies that wish to distribute x265 without being subject to the open source requirements of the

1

http://www.multicorewareinc.com
http://www.telestream.com
http://www.doremilabs.com
https://bitbucket.org/multicoreware/x265

x265

GPL 2 license, commercial licenses are available with competitive terms. Contact license @ x265.com to inquire
about commercial license terms.

While x265 is primarily designed as a video encoder software library, a command-line executable is provided to
facilitate testing and development. We expect x265 to be utilized in many leading video hardware and software
products and services in the coming months.

1.3 LEGAL NOTICES

The x265 software is owned and copyrighted by MulticoreWare, Inc. MulticoreWare is committed to offering the
x265 software under the GNU GPL v2 license. Companies who do not wish to integrate the x265 Software in their
products under the terms of the GPL license can contact MulticoreWare (license @ x265.com) to obtain a commercial
license agreement. Companies who use x265 under the GPL may also wish to work with MulticoreWare to accelerate
the development of specific features or optimized support for specific hardware or software platforms, or to contract
for support.

The GNU GPL v2 license or the x265 commercial license agreement govern your rights to access the copyrighted
x265 software source code, but do not cover any patents that may be applicable to the function of binary executable
software created from the x265 source code. You are responsible for understanding the laws in your country, and
for licensing all applicable patent rights needed for use or distribution of software applications created from the x265
source code. A good place to start is with the Motion Picture Experts Group - Licensing Authority - HEVC Licensing
Program.

x265 is a registered trademark of MulticoreWare, Inc. The x265 logo is a trademark of MulticoreWare, and may only
be used with explicit written permission. All rights reserved.

2 Chapter 1. Introduction

http://www.mpegla.com/main/PID/HEVC/default.aspx
http://www.mpegla.com/main/PID/HEVC/default.aspx

CHAPTER 2

Command Line Options

Note that unless an option is listed as CLI ONLY the option is also supported by x265_param_parse(). The CLI
uses getopt to parse the command line options so the short or long versions may be used and the long options may be
truncated to the shortest unambiguous abbreviation. Users of the API must pass x265_param_parse() the full option
name.

Preset and tune have special implications. The API user must call x265_param_default_preset() with the preset and
tune parameters they wish to use, prior to calling x265_param_parse() to set any additional fields. The CLI does this
for the user implicitly, so all CLI options are applied after the user’s preset and tune choices, regardless of the order of
the arguments on the command line.

If there is an extra command line argument (not an option or an option value) the CLI will treat it as the input filename.
This effectively makes the --input specifier optional for the input file. If there are two extra arguments, the second
is treated as the output bitstream filename, making --output also optional if the input filename was implied. This
makes x265 in.y4m out.hevc a valid command line. If there are more than two extra arguments, the CLI will
consider this an error and abort.

Generally, when an option expects a string value from a list of strings the user may specify the integer ordinal of the
value they desire. ie: --log-level 3 is equivalent to --log-level debug.

2.1 Executable Options

--help, -h
Display help text

CLI ONLY

--version, -V
Display version details

CLI ONLY

Command line executable return codes:

3

x265

0. encode successful
1. unable to parse command line
2. unable to open encoder
3. unable to generate stream headers
4. encoder abort

2.2 Logging/Statistic Options

--log-level <integer|string>
Controls the level of information displayed on the console. Debug level enables per-frame QP, metric, and
bitrate logging. Full level enables hash and weight logging. -1 disables all logging, except certain fatal errors,
and can be specified by the string “none”.

0. error

1. warning

2. info (default)

3. debug

4. full

--no-progress
Disable periodic progress reports from the CLI

CLI ONLY

--csv <filename>
Write encoding statistics to a Comma Separated Values log file. Creates the file if it doesn’t already exist. If
--csv-log-level is 0, it adds one line per run. If --csv-log-level is greater than 0, it writes one line
per frame. Default none

The following statistics are available when --csv-log-level is greater than or equal to 1:

Encode Order The frame order in which the encoder encodes.

Type Slice type of the frame.

POC Picture Order Count - The display order of the frames.

QP Quantization Parameter decided for the frame.

Bits Number of bits consumed by the frame.

Scenecut 1 if the frame is a scenecut, 0 otherwise.

RateFactor Applicable only when CRF is enabled. The rate factor depends on the CRF given by the user. This
is used to determine the QP so as to target a certain quality.

BufferFill Bits available for the next frame. Includes bits carried over from the current frame.

BufferFillFinal Buffer bits available after removing the frame out of CPB.

Latency Latency in terms of number of frames between when the frame was given in and when the frame is
given out.

PSNR Peak signal to noise ratio for Y, U and V planes.

SSIM A quality metric that denotes the structural similarity between frames.

Ref lists POC of references in lists 0 and 1 for the frame.

4 Chapter 2. Command Line Options

x265

Several statistics about the encoded bitstream and encoder performance are available when
--csv-log-level is greater than or equal to 2:

I/P cost ratio: The ratio between the cost when a frame is decided as an I frame to that when it is decided as a P
frame as computed from the quarter-resolution frame in look-ahead. This, in combination with other parameters
such as position of the frame in the GOP, is used to decide scene transitions.

Analysis statistics:

CU Statistics percentage of CU modes.

Distortion Average luma and chroma distortion. Calculated as SSE is done on fenc and recon(after quantiza-
tion).

Psy Energy Average psy energy calculated as the sum of absolute difference between source and recon energy.
Energy is measured by sa8d minus SAD.

Residual Energy Average residual energy. SSE is calculated on fenc and pred(before quantization).

Luma/Chroma Values minumum, maximum and average(averaged by area) luma and chroma values of source
for each frame.

PU Statistics percentage of PU modes at each depth.

Performance statistics:

DecideWait ms number of milliseconds the frame encoder had to wait, since the previous frame was retrieved
by the API thread, before a new frame has been given to it. This is the latency introduced by slicetype decisions
(lookahead).

Row0Wait ms number of milliseconds since the frame encoder received a frame to encode before its first row of
CTUs is allowed to begin compression. This is the latency introduced by reference frames making reconstructed
and filtered rows available.

Wall time ms number of milliseconds between the first CTU being ready to be compressed and the entire frame
being compressed and the output NALs being completed.

Ref Wait Wall ms number of milliseconds between the first reference row being available and the last reference
row becoming available.

Total CTU time ms the total time (measured in milliseconds) spent by worker threads compressing and filtering
CTUs for this frame.

Stall Time ms the number of milliseconds of the reported wall time that were spent with zero worker threads,
aka all compression was completely stalled.

Total frame time Total time spent to encode the frame.

Avg WPP the average number of worker threads working on this frame, at any given time. This value is sampled
at the completion of each CTU. This shows the effectiveness of Wavefront Parallel Processing.

Row Blocks the number of times a worker thread had to abandon the row of CTUs it was encoding because
the row above it was not far enough ahead for the necessary reference data to be available. This is more of a
problem for P frames where some blocks are much more expensive than others.

--csv-log-level <integer>
Controls the level of detail (and size) of –csv log files

0. summary (default)

1. frame level logging

2. frame level logging with performance statistics

2.2. Logging/Statistic Options 5

x265

--ssim, --no-ssim
Calculate and report Structural Similarity values. It is recommended to use --tune ssim if you are measuring
ssim, else the results should not be used for comparison purposes. Default disabled

--psnr, --no-psnr
Calculate and report Peak Signal to Noise Ratio. It is recommended to use --tune psnr if you are measuring
PSNR, else the results should not be used for comparison purposes. Default disabled

2.3 Performance Options

--asm <integer:false:string>, --no-asm
x265 will use all detected CPU SIMD architectures by default. You can disable all assembly by using
--no-asm or you can specify a comma separated list of SIMD architectures to use, matching these strings:
MMX2, SSE, SSE2, SSE3, SSSE3, SSE4, SSE4.1, SSE4.2, AVX, XOP, FMA4, AVX2, FMA3

Some higher architectures imply lower ones being present, this is handled implicitly.

One may also directly supply the CPU capability bitmap as an integer.

Note that by specifying this option you are overriding x265’s CPU detection and it is possible to do this wrong.
You can cause encoder crashes by specifying SIMD architectures which are not supported on your CPU.

Default: auto-detected SIMD architectures

--frame-threads, -F <integer>
Number of concurrently encoded frames. Using a single frame thread gives a slight improvement in compres-
sion, since the entire reference frames are always available for motion compensation, but it has severe perfor-
mance implications. Default is an autodetected count based on the number of CPU cores and whether WPP is
enabled or not.

Over-allocation of frame threads will not improve performance, it will generally just increase memory use.

Values: any value between 0 and 16. Default is 0, auto-detect

--pools <string>, --numa-pools <string>
Comma seperated list of threads per NUMA node. If “none”, then no worker pools are created and only frame
parallelism is possible. If NULL or “” (default) x265 will use all available threads on each NUMA node:

'+' is a special value indicating all cores detected on the node
'*' is a special value indicating all cores detected on the node and all
→˓remaining nodes
'-' is a special value indicating no cores on the node, same as '0'

example strings for a 4-node system:

"" - default, unspecified, all numa nodes are used for thread pools
"*" - same as default
"none" - no thread pools are created, only frame parallelism possible
"-" - same as "none"
"10" - allocate one pool, using up to 10 cores on all available nodes
"-,+" - allocate one pool, using all cores on node 1
"+,-,+" - allocate one pool, using only cores on nodes 0 and 2
"+,-,+,-" - allocate one pool, using only cores on nodes 0 and 2
"-,*" - allocate one pool, using all cores on nodes 1, 2 and 3
"8,8,8,8" - allocate four pools with up to 8 threads in each pool
"8,+,+,+" - allocate two pools, the first with 8 threads on node 0, and the
→˓second with all cores on node 1,2,3

6 Chapter 2. Command Line Options

x265

A thread pool dedicated to a given NUMA node is enabled only when the number of threads to be created on that
NUMA node is explicitly mentioned in that corresponding position with the –pools option. Else, all threads are
spawned from a single pool. The total number of threads will be determined by the number of threads assigned
to the enabled NUMA nodes for that pool. The worker threads are be given affinity to all the enabled NUMA
nodes for that pool and may migrate between them, unless explicitly specified as described above.

In the case that any threadpool has more than 64 threads, the threadpool may be broken down into multiple
pools of 64 threads each; on 32-bit machines, this number is 32. All pools are given affinity to the NUMA nodes
on which the original pool had affinity. For performance reasons, the last thread pool is spawned only if it has
more than 32 threads for 64-bit machines, or 16 for 32-bit machines. If the total number of threads in the system
doesn’t obey this constraint, we may spawn fewer threads than cores which has been emperically shown to be
better for performance.

If the four pool features: --wpp, --pmode, --pme and --lookahead-slices are all disabled, then
--pools is ignored and no thread pools are created.

If “none” is specified, then all four of the thread pool features are implicitly disabled.

Frame encoders are distributed between the available thread pools, and the encoder will never generate more
thread pools than --frame-threads. The pools are used for WPP and for distributed analysis and motion
search.

On Windows, the native APIs offer sufficient functionality to discover the NUMA topology and enforce the
thread affinity that libx265 needs (so long as you have not chosen to target XP or Vista), but on POSIX systems
it relies on libnuma for this functionality. If your target POSIX system is single socket, then building without
libnuma is a perfectly reasonable option, as it will have no effect on the runtime behavior. On a multiple-socket
system, a POSIX build of libx265 without libnuma will be less work efficient. See thread pools for more detail.

Default “”, one pool is created across all available NUMA nodes, with one thread allocated per detected hard-
ware thread (logical CPU cores). In the case that the total number of threads is more than the maximum size
that ATOMIC operations can handle (32 for 32-bit compiles, and 64 for 64-bit compiles), multiple thread pools
may be spawned subject to the performance constraint described above.

Note that the string value will need to be escaped or quoted to protect against shell expansion on many platforms

--wpp, --no-wpp
Enable Wavefront Parallel Processing. The encoder may begin encoding a row as soon as the row above it is
at least two CTUs ahead in the encode process. This gives a 3-5x gain in parallelism for about 1% overhead in
compression efficiency.

This feature is implicitly disabled when no thread pool is present.

Default: Enabled

--pmode, --no-pmode
Parallel mode decision, or distributed mode analysis. When enabled the encoder will distribute the analysis
work of each CU (merge, inter, intra) across multiple worker threads. Only recommended if x265 is not already
saturating the CPU cores. In RD levels 3 and 4 it will be most effective if –rect is enabled. At RD levels 5
and 6 there is generally always enough work to distribute to warrant the overhead, assuming your CPUs are not
already saturated.

–pmode will increase utilization without reducing compression efficiency. In fact, since the modes are all
measured in parallel it makes certain early-outs impractical and thus you usually get slightly better compression
when it is enabled (at the expense of not skipping improbable modes). This bypassing of early-outs can cause
pmode to slow down encodes, especially at faster presets.

This feature is implicitly disabled when no thread pool is present.

Default disabled

2.3. Performance Options 7

x265

--pme, --no-pme
Parallel motion estimation. When enabled the encoder will distribute motion estimation across multiple worker
threads when more than two references require motion searches for a given CU. Only recommended if x265 is
not already saturating CPU cores. --pmode is much more effective than this option, since the amount of work
it distributes is substantially higher. With –pme it is not unusual for the overhead of distributing the work to
outweigh the parallelism benefits.

This feature is implicitly disabled when no thread pool is present.

–pme will increase utilization on many core systems with no effect on the output bitstream.

Default disabled

--preset, -p <integer|string>
Sets parameters to preselected values, trading off compression efficiency against encoding speed. These param-
eters are applied before all other input parameters are applied, and so you can override any parameters that these
values control. See presets for more detail.

0. ultrafast

1. superfast

2. veryfast

3. faster

4. fast

5. medium (default)

6. slow

7. slower

8. veryslow

9. placebo

--tune, -t <string>
Tune the settings for a particular type of source or situation. The changes will be applied after --preset but
before all other parameters. Default none. See tunings for more detail.

Values: psnr, ssim, grain, zero-latency, fast-decode, animation.

--slices <integer>
Encode each incoming frame as multiple parallel slices that may be decoded independently. Support available
only for rectangular slices that cover the entire width of the image.

Recommended for improving encoder performance only if frame-parallelism and WPP are unable to maximize
utilization on given hardware.

Default: 1 slice per frame. Experimental feature

--copy-pic, --no-copy-pic
Allow encoder to copy input x265 pictures to internal frame buffers. When disabled, x265 will not make an
internal copy of the input picture and will work with the application’s buffers. While this allows for deeper
integration, it is the responsbility of the application to (a) ensure that the allocated picture has extra space for
padding that will be done by the library, and (b) the buffers aren’t recycled until the library has completed
encoding this frame (which can be figured out by tracking NALs output by x265)

Default: enabled

8 Chapter 2. Command Line Options

x265

2.4 Input/Output File Options

These options all describe the input video sequence or, in the case of --dither, operations that are performed on the
sequence prior to encode. All options dealing with files (names, formats, offsets or frame counts) are only applicable
to the CLI application.

--input <filename>
Input filename, only raw YUV or Y4M supported. Use single dash for stdin. This option name will be implied
for the first “extra” command line argument.

CLI ONLY

--y4m
Parse input stream as YUV4MPEG2 regardless of file extension, primarily intended for use with stdin (ie:
--input - --y4m). This option is implied if the input filename has a “.y4m” extension

CLI ONLY

--input-depth <integer>
YUV only: Bit-depth of input file or stream

Values: any value between 8 and 16. Default is internal depth.

CLI ONLY

--frames <integer>
The number of frames intended to be encoded. It may be left unspecified, but when it is specified rate control
can make use of this information. It is also used to determine if an encode is actually a stillpicture profile encode
(single frame)

--dither
Enable high quality downscaling to the encoder’s internal bitdepth. Dithering is based on the diffusion of errors
from one row of pixels to the next row of pixels in a picture. Only applicable when the input bit depth is larger
than 8bits. Default disabled

CLI ONLY

--input-res <wxh>
YUV only: Source picture size [w x h]

CLI ONLY

--input-csp <integer|string>
Chroma Subsampling (YUV only): Only 4:0:0(monochrome), 4:2:0, 4:2:2, and 4:4:4 are supported at this time.
The chroma subsampling format of your input must match your desired output chroma subsampling format
(libx265 will not perform any chroma subsampling conversion), and it must be supported by the HEVC profile
you have specified.

0. i400 (4:0:0 monochrome) - Not supported by Main or Main10 profiles

1. i420 (4:2:0 default) - Supported by all HEVC profiles

2. i422 (4:2:2) - Not supported by Main, Main10 and Main12 profiles

3. i444 (4:4:4) - Supported by Main 4:4:4, Main 4:4:4 10, Main 4:4:4 12, Main 4:4:4 16 Intra profiles

4. nv12

5. nv16

--fps <integer|float|numerator/denominator>
YUV only: Source frame rate

Range of values: positive int or float, or num/denom

2.4. Input/Output File Options 9

x265

--interlace <false|tff|bff>, --no-interlace

0. progressive pictures (default)

1. top field first

2. bottom field first

HEVC encodes interlaced content as fields. Fields must be provided to the encoder in the correct temporal order.
The source dimensions must be field dimensions and the FPS must be in units of fields per second. The decoder
must re-combine the fields in their correct orientation for display.

--seek <integer>
Number of frames to skip at start of input file. Default 0

CLI ONLY

--frames, -f <integer>
Number of frames of input sequence to be encoded. Default 0 (all)

CLI ONLY

--output, -o <filename>
Bitstream output file name. If there are two extra CLI options, the first is implicitly the input filename and the
second is the output filename, making the --output option optional.

The output file will always contain a raw HEVC bitstream, the CLI does not support any container file formats.

CLI ONLY

--output-depth, -D 8|10|12
Bitdepth of output HEVC bitstream, which is also the internal bit depth of the encoder. If the requested bit
depth is not the bit depth of the linked libx265, it will attempt to bind libx265_main for an 8bit encoder,
libx265_main10 for a 10bit encoder, or libx265_main12 for a 12bit encoder, with the same API version as
the linked libx265.

If the output depth is not specified but --profile is specified, the output depth will be derived from the profile
name.

CLI ONLY

--chunk-start <integer>
First frame of the chunk. Frames preceeding this in display order will be encoded, however, they will be
discarded in the bitstream. This feature can be enabled only in closed GOP structures. Default 0 (disabled).

--chunk-end <integer>
Last frame of the chunk. Frames following this in display order will be used in taking lookahead decisions, but,
they will not be encoded. This feature can be enabled only in closed GOP structures. Default 0 (disabled).

--field, --no-field
Enable or disable field coding. Default disabled.

2.5 Profile, Level, Tier

--profile, -P <string>
Enforce the requirements of the specified profile, ensuring the output stream will be decodable by a decoder
which supports that profile. May abort the encode if the specified profile is impossible to be supported by the
compile options chosen for the encoder (a high bit depth encoder will be unable to output bitstreams compliant
with Main or MainStillPicture).

The following profiles are supported in x265.

10 Chapter 2. Command Line Options

x265

8bit profiles:

* main, main-intra, mainstillpicture (or msp for short)

* main444-8, main444-intra, main444-stillpicture

See note below on signaling intra and stillpicture profiles.

10bit profiles:

* main10, main10-intra

* main422-10, main422-10-intra

* main444-10, main444-10-intra

12bit profiles:

* main12, main12-intra

* main422-12, main422-12-intra

* main444-12, main444-12-intra

CLI ONLY

API users must call x265_param_apply_profile() after configuring their param structure. Any changes made to
the param structure after this call might make the encode non-compliant.

The CLI application will derive the output bit depth from the profile name if --output-depth is not speci-
fied.

--level-idc <integer|float>
Minimum decoder requirement level. Defaults to 0, which implies auto-detection by the encoder. If specified,
the encoder will attempt to bring the encode specifications within that specified level. If the encoder is unable
to reach the level it issues a warning and aborts the encode. If the requested requirement level is higher than the
actual level, the actual requirement level is signaled.

Beware, specifying a decoder level will force the encoder to enable VBV for constant rate factor encodes, which
may introduce non-determinism.

The value is specified as a float or as an integer with the level times 10, for example level 5.1 is specified as
“5.1” or “51”, and level 5.0 is specified as “5.0” or “50”.

Annex A levels: 1, 2, 2.1, 3, 3.1, 4, 4.1, 5, 5.1, 5.2, 6, 6.1, 6.2, 8.5

--high-tier, --no-high-tier
If --level-idc has been specified, –high-tier allows the support of high tier at that level. The encoder will
first attempt to encode at the specified level, main tier first, turning on high tier only if necessary and available
at that level.If your requested level does not support a High tier, high tier will not be supported. If –no-high-tier
has been specified, then the encoder will attempt to encode only at the main tier.

Default: enabled

--ref <1..16>
Max number of L0 references to be allowed. This number has a linear multiplier effect on the amount of work
performed in motion search, but will generally have a beneficial affect on compression and distortion.

Note that x265 allows up to 16 L0 references but the HEVC specification only allows a maximum of 8 total
reference frames. So if you have B frames enabled only 7 L0 refs are valid and if you have --b-pyramid
enabled (which is enabled by default in all presets), then only 6 L0 refs are the maximum allowed by the HEVC
specification. If x265 detects that the total reference count is greater than 8, it will issue a warning that the
resulting stream is non-compliant and it signals the stream as profile NONE and level NONE and will abort the
encode unless --allow-non-conformance it specified. Compliant HEVC decoders may refuse to decode
such streams.

2.5. Profile, Level, Tier 11

x265

Default 3

--allow-non-conformance, --no-allow-non-conformance
Allow libx265 to generate a bitstream with profile and level NONE. By default it will abort any encode which
does not meet strict level compliance. The two most likely causes for non-conformance are --ctu being too
small, --ref being too high, or the bitrate or resolution being out of specification.

Default: disabled

--uhd-bd
Enable Ultra HD Blu-ray format support. If specified with incompatible encoding options, the encoder will
attempt to modify/set the right encode specifications. If the encoder is unable to do so, this option will be turned
OFF. Highly experimental.

Default: disabled

Note: --profile, --level-idc, and --high-tier are only intended for use when you are targeting a
particular decoder (or decoders) with fixed resource limitations and must constrain the bitstream within those limits.
Specifying a profile or level may lower the encode quality parameters to meet those requirements but it will never raise
them. It may enable VBV constraints on a CRF encode.

Also note that x265 determines the decoder requirement profile and level in three steps. First, the user configures
an x265_param structure with their suggested encoder options and then optionally calls x265_param_apply_profile()
to enforce a specific profile (main, main10, etc). Second, an encoder is created from this x265_param instance and
the --level-idc and --high-tier parameters are used to reduce bitrate or other features in order to enforce
the target level. Finally, the encoder re-examines the final set of parameters and detects the actual minimum decoder
requirement level and this is what is signaled in the bitstream headers. The detected decoder level will only use High
tier if the user specified a High tier level.

The signaled profile will be determined by the encoder’s internal bitdepth and input color space. If --keyint is 0 or
1, then an intra variant of the profile will be signaled.

If --total-frames is 1, then a stillpicture variant will be signaled, but this parameter is not always set by applica-
tions, particularly not when the CLI uses stdin streaming or when libx265 is used by third-party applications.

2.6 Mode decision / Analysis

--rd <1..6>
Level of RDO in mode decision. The higher the value, the more exhaustive the analysis and the more rate
distortion optimization is used. The lower the value the faster the encode, the higher the value the smaller the
bitstream (in general). Default 3

Note that this table aims for accuracy, but is not necessarily our final target behavior for each mode.

Level Description
0 sa8d mode and split decisions, intra w/ source pixels, currently not supported
1 recon generated (better intra), RDO merge/skip selection
2 RDO splits and merge/skip selection
3 RDO mode and split decisions, chroma residual used for sa8d
4 Currently same as 3
5 Adds RDO prediction decisions
6 Currently same as 5

Range of values: 1: least .. 6: full RDO analysis

12 Chapter 2. Command Line Options

x265

Options which affect the coding unit quad-tree, sometimes referred to as the prediction quad-tree.

--ctu, -s <64|32|16>
Maximum CU size (width and height). The larger the maximum CU size, the more efficiently x265 can encode
flat areas of the picture, giving large reductions in bitrate. However this comes at a loss of parallelism with
fewer rows of CUs that can be encoded in parallel, and less frame parallelism as well. Because of this the faster
presets use a CU size of 32. Default: 64

--min-cu-size <32|16|8>
Minimum CU size (width and height). By using 16 or 32 the encoder will not analyze the cost of CUs below
that minimum threshold, saving considerable amounts of compute with a predictable increase in bitrate. This
setting has a large effect on performance on the faster presets.

Default: 8 (minimum 8x8 CU for HEVC, best compression efficiency)

Note: All encoders within a single process must use the same settings for the CU size range. --ctu and
--min-cu-size must be consistent for all of them since the encoder configures several key global data structures
based on this range.

--limit-refs <0|1|2|3>
When set to X265_REF_LIMIT_DEPTH (1) x265 will limit the references analyzed at the current depth based
on the references used to code the 4 sub-blocks at the next depth. For example, a 16x16 CU will only use the
references used to code its four 8x8 CUs.

When set to X265_REF_LIMIT_CU (2), the rectangular and asymmetrical partitions will only use references
selected by the 2Nx2N motion search (including at the lowest depth which is otherwise unaffected by the depth
limit).

When set to 3 (X265_REF_LIMIT_DEPTH && X265_REF_LIMIT_CU), the 2Nx2N motion search at each
depth will only use references from the split CUs and the rect/amp motion searches at that depth will only use
the reference(s) selected by 2Nx2N.

For all non-zero values of limit-refs, the current depth will evaluate intra mode (in inter slices), only if intra
mode was chosen as the best mode for atleast one of the 4 sub-blocks.

You can often increase the number of references you are using (within your decoder level limits) if you enable
one or both of these flags.

Default 3.

--limit-modes, --no-limit-modes
When enabled, limit-modes will limit modes analyzed for each CU using cost metrics from the 4 sub-CUs.
When multiple inter modes like --rect and/or --amp are enabled, this feature will use motion cost heuristics
from the 4 sub-CUs to bypass modes that are unlikely to be the best choice. This can significantly improve
performance when rect and/or --amp are enabled at minimal compression efficiency loss.

--rect, --no-rect
Enable analysis of rectangular motion partitions Nx2N and 2NxN (50/50 splits, two directions). Default disabled

--amp, --no-amp
Enable analysis of asymmetric motion partitions (75/25 splits, four directions). At RD levels 0 through 4, AMP
partitions are only considered at CU sizes 32x32 and below. At RD levels 5 and 6, it will only consider AMP
partitions as merge candidates (no motion search) at 64x64, and as merge or inter candidates below 64x64.

The AMP partitions which are searched are derived from the current best inter partition. If Nx2N (vertical
rectangular) is the best current prediction, then left and right asymmetrical splits will be evaluated. If 2NxN
(horizontal rectangular) is the best current prediction, then top and bottom asymmetrical splits will be evaluated,
If 2Nx2N is the best prediction, and the block is not a merge/skip, then all four AMP partitions are evaluated.

2.6. Mode decision / Analysis 13

x265

This setting has no effect if rectangular partitions are disabled. Default disabled

--early-skip, --no-early-skip
Measure 2Nx2N merge candidates first; if no residual is found, additional modes at that depth are not analysed.
Default disabled

--rskip, --no-rskip
This option determines early exit from CU depth recursion. When a skip CU is found, additional heuristics
(depending on rd-level) are used to decide whether to terminate recursion. In rdlevels 5 and 6, comparison with
inter2Nx2N is used, while at rdlevels 4 and neighbour costs are used to skip recursion. Provides minimal quality
degradation at good performance gains when enabled.

Default: enabled, disabled for --tune grain

--splitrd-skip, --no-splitrd-skip
Enable skipping split RD analysis when sum of split CU rdCost larger than one split CU rdCost for Intra CU.
Default disabled.

--fast-intra, --no-fast-intra
Perform an initial scan of every fifth intra angular mode, then check modes +/- 2 distance from the best mode,
then +/- 1 distance from the best mode, effectively performing a gradient descent. When enabled 10 modes in
total are checked. When disabled all 33 angular modes are checked. Only applicable for --rd levels 4 and
below (medium preset and faster).

--b-intra, --no-b-intra
Enables the evaluation of intra modes in B slices. Default disabled.

--cu-lossless, --no-cu-lossless
For each CU, evaluate lossless (transform and quant bypass) encode of the best non-lossless mode option as a
potential rate distortion optimization. If the global option --lossless has been specified, all CUs will be
encoded as lossless unconditionally regardless of whether this option was enabled. Default disabled.

Only effective at RD levels 3 and above, which perform RDO mode decisions.

--tskip-fast, --no-tskip-fast
Only evaluate transform skip for NxN intra predictions (4x4 blocks). Only applicable if transform skip is
enabled. For chroma, only evaluate if luma used tskip. Inter block tskip analysis is unmodified. Default disabled

--rd-refine, --no-rd-refine
For each analysed CU, calculate R-D cost on the best partition mode for a range of QP values, to find the optimal
rounding effect. Default disabled.

Only effective at RD levels 5 and 6

Analysis re-use options, to improve performance when encoding the same sequence multiple times (presumably at
varying bitrates). The encoder will not reuse analysis if slice type parameters do not match.

--analysis-save <filename>
Encoder outputs analysis information of each frame. Analysis data from save mode is written to the file specified.
Requires cutree, pmode to be off. Default disabled.

--analysis-load <filename>
Encoder reuses analysis information from the file specified. By reading the analysis data writen by an earlier
encode of the same sequence, substantial redundant work may be avoided. Requires cutree, pmode to be off.
Default disabled.

The amount of analysis data stored/reused is determined by --analysis-reuse-level.

--analysis-reuse-file <filename>
Specify a filename for multi-pass-opt-analysis and multi-pass-opt-distortion. If no filename is specified,
x265_analysis.dat is used.

14 Chapter 2. Command Line Options

x265

--analysis-reuse-level <1..10>
Amount of information stored/reused in --analysis-reuse-mode is distributed across levels. Higher the
value, higher the information stored/reused, faster the encode. Default 5.

Note that –analysis-reuse-level must be paired with analysis-reuse-mode.

Level Description
1 Lookahead information
2 to 4 Level 1 + intra/inter modes, ref’s
5 and 6 Level 2 + rect-amp
7 Level 5 + AVC size CU refinement
8 and 9 Level 5 + AVC size Full CU analysis-info
10 Level 5 + Full CU analysis-info

--refine-mv-type <string>
Reuse MV information received through API call. Currently receives information for AVC size and the accepted
string input is “avc”. Default is disabled.

--refine-ctu-distortion <0/1>
Store/normalize ctu distortion in analysis-save/load. 0 - Disabled. 1 - Save ctu distortion to the analysis file
specified during analysis-save.

Load CTU distortion from the analysis file and normalize it across every frame during analysis-load.

Default 0.

--scale-factor
Factor by which input video is scaled down for analysis save mode. This option should be coupled with analysis-
reuse-mode option, –analysis-reuse-level 10. The ctu size of load can either be the same as that of save or double
the size of save. Default 0.

--refine-intra <0..4>
Enables refinement of intra blocks in current encode.

Level 0 - Forces both mode and depth from the save encode.

Level 1 - Evaluates all intra modes at current depth(n) and at depth (n+1) when current block size is one greater
than the min-cu-size. Forces modes for larger blocks.

Level 2 - In addition to the functionality of level 1, at all depths, force (a) only depth when angular mode is
chosen by the save encode. (b) depth and mode when other intra modes are chosen by the save encode.

Level 3 - Perform analysis of intra modes for depth reused from first encode.

Level 4 - Does not reuse any analysis information - redo analysis for the intra block.

Default 0.

--refine-inter <0..3>
Enables refinement of inter blocks in current encode.

Level 0 - Forces both mode and depth from the save encode.

Level 1 - Evaluates all inter modes at current depth(n) and at depth (n+1) when current block size is one greater
than the min-cu-size. Forces modes for larger blocks.

Level 2 - In addition to the functionality of level 1, restricts the modes evaluated when specific modes are
decided as the best mode by the save encode.

2nx2n in save encode - disable re-evaluation of rect and amp.

skip in save encode - re-evaluates only skip, merge and 2nx2n modes.

2.6. Mode decision / Analysis 15

x265

Level 3 - Perform analysis of inter modes while reusing depths from the save encode.

Default 0.

--dynamic-refine, --no-dynamic-refine
Dynamically switches --refine-inter levels 0-3 based on the content and the encoder settings. It is
recommended to use --refine-intra 4 with dynamic refinement. Default disabled.

--refine-mv
Enables refinement of motion vector for scaled video. Evaluates the best motion vector by searching the sur-
rounding eight integer and subpel pixel positions.

Options which affect the transform unit quad-tree, sometimes referred to as the residual quad-tree (RQT).

--rdoq-level <0|1|2>, --no-rdoq-level
Specify the amount of rate-distortion analysis to use within quantization:

At level 0 rate-distortion cost is not considered in quant

At level 1 rate-distortion cost is used to find optimal rounding values for each level (and allows psy-rdoq to
be effective). It trades-off the signaling cost of the coefficient vs its post-inverse quant distortion from the pre-
quant coefficient. When --psy-rdoq is enabled, this formula is biased in favor of more energy in the residual
(larger coefficient absolute levels)

At level 2 rate-distortion cost is used to make decimate decisions on each 4x4 coding group, including the cost
of signaling the group within the group bitmap. If the total distortion of not signaling the entire coding group is
less than the rate cost, the block is decimated. Next, it applies rate-distortion cost analysis to the last non-zero
coefficient, which can result in many (or all) of the coding groups being decimated. Psy-rdoq is less effective at
preserving energy when RDOQ is at level 2, since it only has influence over the level distortion costs.

--tu-intra-depth <1..4>
The transform unit (residual) quad-tree begins with the same depth as the coding unit quad-tree, but the encoder
may decide to further split the transform unit tree if it improves compression efficiency. This setting limits the
number of extra recursion depth which can be attempted for intra coded units. Default: 1, which means the
residual quad-tree is always at the same depth as the coded unit quad-tree

Note that when the CU intra prediction is NxN (only possible with 8x8 CUs), a TU split is implied, and thus the
residual quad-tree begins at 4x4 and cannot split any futhrer.

--tu-inter-depth <1..4>
The transform unit (residual) quad-tree begins with the same depth as the coding unit quad-tree, but the encoder
may decide to further split the transform unit tree if it improves compression efficiency. This setting limits
the number of extra recursion depth which can be attempted for inter coded units. Default: 1. which means
the residual quad-tree is always at the same depth as the coded unit quad-tree unless the CU was coded with
rectangular or AMP partitions, in which case a TU split is implied and thus the residual quad-tree begins one
layer below the CU quad-tree.

--limit-tu <0..4>
Enables early exit from TU depth recursion, for inter coded blocks.

Level 1 - decides to recurse to next higher depth based on cost comparison of full size TU and split TU.

Level 2 - based on first split subTU’s depth, limits recursion of other split subTUs.

Level 3 - based on the average depth of the co-located and the neighbor CUs’ TU depth, limits recursion of the
current CU.

Level 4 - uses the depth of the neighbouring/ co-located CUs TU depth to limit the 1st subTU depth. The 1st
subTU depth is taken as the limiting depth for the other subTUs.

Enabling levels 3 or 4 may cause a mismatch in the output bitstreams between option:–analysis-save and
option:–analysis-load as all neighbouring CUs TU depth may not be available in the option:–analysis-load

16 Chapter 2. Command Line Options

x265

run as only the best mode’s information is available to it.

Default: 0

--nr-intra <integer>, --nr-inter <integer>
Noise reduction - an adaptive deadzone applied after DCT (subtracting from DCT coefficients), before quan-
tization. It does no pixel-level filtering, doesn’t cross DCT block boundaries, has no overlap, The higher the
strength value parameter, the more aggressively it will reduce noise.

Enabling noise reduction will make outputs diverge between different numbers of frame threads. Outputs will
be deterministic but the outputs of -F2 will no longer match the outputs of -F3, etc.

Values: any value in range of 0 to 2000. Default 0 (disabled).

--tskip, --no-tskip
Enable evaluation of transform skip (bypass DCT but still use quantization) coding for 4x4 TU coded blocks.

Only effective at RD levels 3 and above, which perform RDO mode decisions. Default disabled

--rdpenalty <0..2>
When set to 1, transform units of size 32x32 are given a 4x bit cost penalty compared to smaller transform units,
in intra coded CUs in P or B slices.

When set to 2, transform units of size 32x32 are not even attempted, unless otherwise required by the maximum
recursion depth. For this option to be effective with 32x32 intra CUs, --tu-intra-depth must be at least
2. For it to be effective with 64x64 intra CUs, --tu-intra-depth must be at least 3.

Note that in HEVC an intra transform unit (a block of the residual quad-tree) is also a prediction unit, meaning
that the intra prediction signal is generated for each TU block, the residual subtracted and then coded. The
coding unit simply provides the prediction modes that will be used when predicting all of the transform units
within the CU. This means that when you prevent 32x32 intra transform units, you are preventing 32x32 intra
predictions.

Default 0, disabled.

Values: 0:disabled 1:4x cost penalty 2:force splits

--max-tu-size <32|16|8|4>
Maximum TU size (width and height). The residual can be more efficiently compressed by the DCT transform
when the max TU size is larger, but at the expense of more computation. Transform unit quad-tree begins at the
same depth of the coded tree unit, but if the maximum TU size is smaller than the CU size then transform QT
begins at the depth of the max-tu-size. Default: 32.

--dynamic-rd <0..4>
Increases the RD level at points where quality drops due to VBV rate control enforcement. The number of CUs
for which the RD is reconfigured is determined based on the strength. Strength 1 gives the best FPS, strength 4
gives the best SSIM. Strength 0 switches this feature off. Default: 0.

Effective for RD levels 4 and below.

--ssim-rd, --no-ssim-rd
Enable/Disable SSIM RDO. SSIM is a better perceptual quality assessment method as compared to MSE. SSIM
based RDO calculation is based on residual divisive normalization scheme. This normalization is consistent
with the luminance and contrast masking effect of Human Visual System. It is used for mode selection during
analysis of CTUs and can achieve significant gain in terms of objective quality metrics SSIM and PSNR. It only
has effect on presets which use RDO-based mode decisions (--rd 3 and above).

2.6. Mode decision / Analysis 17

x265

2.7 Temporal / motion search options

--max-merge <1..5>
Maximum number of neighbor (spatial and temporal) candidate blocks that the encoder may consider for merg-
ing motion predictions. If a merge candidate results in no residual, it is immediately selected as a “skip”.
Otherwise the merge candidates are tested as part of motion estimation when searching for the least cost inter
option. The max candidate number is encoded in the SPS and determines the bit cost of signaling merge CUs.
Default 2

--me <integer|string>
Motion search method. Generally, the higher the number the harder the ME method will try to find an optimal
match. Diamond search is the simplest. Hexagon search is a little better. Uneven Multi-Hexegon is an adaption
of the search method used by x264 for slower presets. Star is a three step search adapted from the HM encoder:
a star-pattern search followed by an optional radix scan followed by an optional star-search refinement. Full
is an exhaustive search; an order of magnitude slower than all other searches but not much better than umh or
star. SEA is similar to FULL search; a three step motion search adopted from x264: DC calculation followed
by ADS calculation followed by SAD of the passed motion vector candidates, hence faster than Full search.

0. dia

1. hex (default)

2. umh

3. star

4. sea

5. full

--subme, -m <0..7>
Amount of subpel refinement to perform. The higher the number the more subpel iterations and steps are
performed. Default 2

-m HPEL iters HPEL dirs QPEL iters QPEL dirs HPEL SATD
0 1 4 0 4 false
1 1 4 1 4 false
2 1 4 1 4 true
3 2 4 1 4 true
4 2 4 2 4 true
5 1 8 1 8 true
6 2 8 1 8 true
7 2 8 2 8 true

At –subme values larger than 2, chroma residual cost is included in all subpel refinement steps and chroma
residual is included in all motion estimation decisions (selecting the best reference picture in each list, and
chosing between merge, uni-directional motion and bi-directional motion). The ‘slow’ preset is the first preset
to enable the use of chroma residual.

--merange <integer>
Motion search range. Default 57

The default is derived from the default CTU size (64) minus the luma interpolation half-length (4) minus max-
imum subpel distance (2) minus one extra pixel just in case the hex search method is used. If the search range
were any larger than this, another CTU row of latency would be required for reference frames.

Range of values: an integer from 0 to 32768

18 Chapter 2. Command Line Options

x265

--temporal-mvp, --no-temporal-mvp
Enable temporal motion vector predictors in P and B slices. This enables the use of the motion vector from the
collocated block in the previous frame to be used as a predictor. Default is enabled

--weightp, -w, --no-weightp
Enable weighted prediction in P slices. This enables weighting analysis in the lookahead, which influences
slice decisions, and enables weighting analysis in the main encoder which allows P reference samples to have
a weight function applied to them prior to using them for motion compensation. In video which has lighting
changes, it can give a large improvement in compression efficiency. Default is enabled

--weightb, --no-weightb
Enable weighted prediction in B slices. Default disabled

--analyze-src-pics, --no-analyze-src-pics
Enable motion estimation with source frame pixels, in this mode, motion estimation can be computed indepen-
dently. Default disabled.

2.8 Spatial/intra options

--strong-intra-smoothing, --no-strong-intra-smoothing
Enable strong intra smoothing for 32x32 intra blocks. This flag performs bi-linear interpolation of the corner
reference samples for a strong smoothing effect. The purpose is to prevent blocking or banding artifacts in
regions with few/zero AC coefficients. Default enabled

--constrained-intra, --no-constrained-intra
Constrained intra prediction. When generating intra predictions for blocks in inter slices, only intra-coded
reference pixels are used. Inter-coded reference pixels are replaced with intra-coded neighbor pixels or default
values. The general idea is to block the propagation of reference errors that may have resulted from lossy signals.
Default disabled

2.9 Psycho-visual options

Left to its own devices, the encoder will make mode decisions based on a simple rate distortion formula, trading
distortion for bitrate. This is generally effective except for the manner in which this distortion is measured. It tends to
favor blurred reconstructed blocks over blocks which have wrong motion. The human eye generally prefers the wrong
motion over the blur and thus x265 offers psycho-visual adjustments to the rate distortion algorithm.

--psy-rd will add an extra cost to reconstructed blocks which do not match the visual energy of the source block.
The higher the strength of --psy-rd the more strongly it will favor similar energy over blur and the more aggres-
sively it will ignore rate distortion. If it is too high, it will introduce visal artifacts and increase bitrate enough for
rate control to increase quantization globally, reducing overall quality. psy-rd will tend to reduce the use of blurred
prediction modes, like DC and planar intra and bi-directional inter prediction.

--psy-rdoq will adjust the distortion cost used in rate-distortion optimized quantization (RDO quant), enabled by
--rdoq-level 1 or 2, favoring the preservation of energy in the reconstructed image. --psy-rdoq prevents
RDOQ from blurring all of the encoding options which psy-rd has to chose from. At low strength levels, psy-rdoq
will influence the quantization level decisions, favoring higher AC energy in the reconstructed image. As psy-rdoq
strength is increased, more non-zero coefficient levels are added and fewer coefficients are zeroed by RDOQ’s rate
distortion analysis. High levels of psy-rdoq can double the bitrate which can have a drastic effect on rate control,
forcing higher overall QP, and can cause ringing artifacts. psy-rdoq is less accurate than psy-rd, it is biasing towards
energy in general while psy-rd biases towards the energy of the source image. But very large psy-rdoq values can
sometimes be beneficial.

2.8. Spatial/intra options 19

x265

As a general rule, when both psycho-visual features are disabled, the encoder will tend to blur blocks in areas of
difficult motion. Turning on small amounts of psy-rd and psy-rdoq will improve the perceived visual quality. Increas-
ing psycho-visual strength further will improve quality and begin introducing artifacts and increase bitrate, which
may force rate control to increase global QP. Finding the optimal psycho-visual parameters for a given video requires
experimentation. Our recommended defaults (1.0 for both) are generally on the low end of the spectrum.

The lower the bitrate, the lower the optimal psycho-visual settings. If the bitrate is too low for the psycho-visual
settings, you will begin to see temporal artifacts (motion judder). This is caused when the encoder is forced to code
skip blocks (no residual) in areas of difficult motion because it is the best option psycho-visually (they have great
amounts of energy and no residual cost). One can lower psy-rd settings when judder is happening, and allow the
encoder to use some blur in these areas of high motion.

In 444, chroma gets twice as much resolution, so halve the quality when psy-rd is enabled. So when psy-rd is enabled
for 444 videos, cbQpOffset and crQpOffset are set to value 6, if they are not explicitly set.

--psy-rd <float>
Influence rate distortion optimizated mode decision to preserve the energy of the source image in the encoded
image at the expense of compression efficiency. It only has effect on presets which use RDO-based mode
decisions (--rd 3 and above). 1.0 is a typical value. Default 2.0

Range of values: 0 .. 5.0

--psy-rdoq <float>
Influence rate distortion optimized quantization by favoring higher energy in the reconstructed image. This
generally improves perceived visual quality at the cost of lower quality metric scores. It only has effect when
--rdoq-level is 1 or 2. High values can be beneficial in preserving high-frequency detail. Default: 0.0 (1.0
for presets slow, slower, veryslow)

Range of values: 0 .. 50.0

2.10 Slice decision options

--open-gop, --no-open-gop
Enable open GOP, allow I-slices to be non-IDR. Default enabled

--keyint, -I <integer>
Max intra period in frames. A special case of infinite-gop (single keyframe at the beginning of the stream) can
be triggered with argument -1. Use 1 to force all-intra. When intra-refresh is enabled it specifies the interval
between which refresh sweeps happen. Default 250

--min-keyint, -i <integer>
Minimum GOP size. Scenecuts beyond this interval are coded as IDR and start a new keyframe, while scenecuts
closer together are coded as I or P. For fixed keyframe interval, set value to be equal to keyint.

Range of values: >=0 (0: auto)

--scenecut <integer>, --no-scenecut
How aggressively I-frames need to be inserted. The higher the threshold value, the more aggressive the I-frame
placement. --scenecut 0 or --no-scenecut disables adaptive I frame placement. Default 40

--scenecut-bias <0..100.0>
This value represents the percentage difference between the inter cost and intra cost of a frame used in scenecut
detection. For example, a value of 5 indicates, if the inter cost of a frame is greater than or equal to 95 percent
of the intra cost of the frame, then detect this frame as scenecut. Values between 5 and 15 are recommended.
Default 5.

20 Chapter 2. Command Line Options

x265

--radl <integer>
Number of RADL pictures allowed infront of IDR. Requires fixed keyframe interval. Recommended value is
2-3. Default 0 (disabled).

**Range of values: Between 0 and –bframes

--ctu-info <0, 1, 2, 4, 6>
This value enables receiving CTU information asynchronously and determine reaction to the CTU informa-
tion. Default 0. 1: force the partitions if CTU information is present. 2: functionality of (1) and reduce qp
if CTU information has changed. 4: functionality of (1) and force Inter modes when CTU Information has
changed, merge/skip otherwise. This option should be enabled only when planning to invoke the API func-
tion x265_encoder_ctu_info to copy ctu-info asynchronously. If enabled without calling the API function, the
encoder will wait indefinitely.

--intra-refresh
Enables Periodic Intra Refresh(PIR) instead of keyframe insertion. PIR can replace keyframes by inserting a
column of intra blocks in non-keyframes, that move across the video from one side to the other and thereby
refresh the image but over a period of multiple frames instead of a single keyframe.

--rc-lookahead <integer>
Number of frames for slice-type decision lookahead (a key determining factor for encoder latency). The longer
the lookahead buffer the more accurate scenecut decisions will be, and the more effective cuTree will be at
improving adaptive quant. Having a lookahead larger than the max keyframe interval is not helpful. Default 20

Range of values: Between the maximum consecutive bframe count (--bframes) and 250

--gop-lookahead <integer>
Number of frames for GOP boundary decision lookahead. If a scenecut frame is found within this from the gop
boundary set by –keyint, the GOP will be extented until such a point, otherwise the GOP will be terminated as
set by –keyint. Default 0.

Range of values: Between 0 and (–rc-lookahead - mini-GOP length)

It is recommended to have –gop-lookahaed less than –min-keyint as scenecuts beyond –min-keyint are already
being coded as keyframes.

--lookahead-slices <0..16>
Use multiple worker threads to measure the estimated cost of each frame within the lookahead. The frame is
divided into the specified number of slices, and one-thread is launched per slice. When --b-adapt is 2, most
frame cost estimates will be performed in batch mode (many cost estimates at the same time) and lookahead-
slices is ignored for batched estimates; it may still be used for single cost estimations. The higher this parameter,
the less accurate the frame costs will be (since context is lost across slice boundaries) which will result in less
accurate B-frame and scene-cut decisions. The effect on performance can be significant especially on systems
with many threads.

The encoder may internally lower the number of slices or disable slicing to ensure each slice codes at least 10
16x16 rows of lowres blocks to minimize the impact on quality. For example, for 720p and 1080p videos, the
number of slices is capped to 4 and 6, respectively. For resolutions lesser than 720p, slicing is auto-disabled.

If slices are used in lookahead, they are logged in the list of tools as lslices

Values: 0 - disabled. 1 is the same as 0. Max 16. Default: 8 for ultrafast, superfast, faster, fast, medium

4 for slow, slower disabled for veryslow, slower

--lookahead-threads <integer>

Use multiple worker threads dedicated to doing only lookahead instead of sharing the worker threads
with frame Encoders. A dedicated lookahead threadpool is created with the specified number of
worker threads. This can range from 0 upto half the hardware threads available for encoding. Using

2.10. Slice decision options 21

x265

too many threads for lookahead can starve resources for frame Encoder and can harm performance.
Default is 0 - disabled, Lookahead shares worker threads with other FrameEncoders .

Values: 0 - disabled(default). Max - Half of available hardware threads.

--b-adapt <integer>
Set the level of effort in determining B frame placement.

With b-adapt 0, the GOP structure is fixed based on the values of --keyint and --bframes.

With b-adapt 1 a light lookahead is used to choose B frame placement.

With b-adapt 2 (trellis) a viterbi B path selection is performed

Values: 0:none; 1:fast; 2:full(trellis) default

--bframes, -b <0..16>
Maximum number of consecutive b-frames. Use --bframes 0 to force all P/I low-latency encodes. Default
4. This parameter has a quadratic effect on the amount of memory allocated and the amount of work performed
by the full trellis version of --b-adapt lookahead.

--bframe-bias <integer>
Bias towards B frames in slicetype decision. The higher the bias the more likely x265 is to use B frames. Can
be any value between -90 and 100 and is clipped to that range. Default 0

--b-pyramid, --no-b-pyramid
Use B-frames as references, when possible. Default enabled

--force-flush <integer>
Force the encoder to flush frames. Default is 0.

Values: 0 - flush the encoder only when all the input pictures are over. 1 - flush all the frames even when the
input is not over.

slicetype decision may change with this option.

2 - flush the slicetype decided frames only.

--fades, --no-fades
Detect and handle fade-in regions. Default disabled.

2.11 Quality, rate control and rate distortion options

--bitrate <integer>
Enables single-pass ABR rate control. Specify the target bitrate in kbps. Default is 0 (CRF)

Range of values: An integer greater than 0

--crf <0..51.0>
Quality-controlled variable bitrate. CRF is the default rate control method; it does not try to reach any particular
bitrate target, instead it tries to achieve a given uniform quality and the size of the bitstream is determined by the
complexity of the source video. The higher the rate factor the higher the quantization and the lower the quality.
Default rate factor is 28.0.

--crf-max <0..51.0>
Specify an upper limit to the rate factor which may be assigned to any given frame (ensuring a max QP). This is
dangerous when CRF is used in combination with VBV as it may result in buffer underruns. Default disabled

--crf-min <0..51.0>
Specify an lower limit to the rate factor which may be assigned to any given frame (ensuring a min compression
factor).

22 Chapter 2. Command Line Options

x265

--vbv-bufsize <integer>
Specify the size of the VBV buffer (kbits). Enables VBV in ABR mode. In CRF mode, --vbv-maxrate
must also be specified. Default 0 (vbv disabled)

--vbv-maxrate <integer>
Maximum local bitrate (kbits/sec). Will be used only if vbv-bufsize is also non-zero. Both vbv-bufsize and
vbv-maxrate are required to enable VBV in CRF mode. Default 0 (disabled)

Note that when VBV is enabled (with a valid --vbv-bufsize), VBV emergency denoising is turned on.
This will turn on aggressive denoising at the frame level when frame QP > QP_MAX_SPEC (51), drastically
reducing bitrate and allowing ratecontrol to assign lower QPs for the following frames. The visual effect is
blurring, but removes significant blocking/displacement artifacts.

--vbv-init <float>
Initial buffer occupancy. The portion of the decode buffer which must be full before the decoder will begin
decoding. Determines absolute maximum frame size. May be specified as a fractional value between 0 and 1,
or in kbits. In other words these two option pairs are equivalent:

--vbv-bufsize 1000 --vbv-init 900
--vbv-bufsize 1000 --vbv-init 0.9

Default 0.9

Range of values: fractional: 0 - 1.0, or kbits: 2 .. bufsize

--vbv-end <float>
Final buffer emptiness. The portion of the decode buffer that must be available after all the specified frames
have been inserted into the decode buffer. Specified as a fractional value between 0 and 1, or in kbits. Default 0
(disabled)

This enables basic support for chunk-parallel encoding where each segment can specify the starting and ending
state of the VBV buffer so that VBV compliance can be maintained when chunks are independently encoded
and stitched together.

--vbv-end-fr-adj <float>
Frame from which qp has to be adjusted to achieve final decode buffer emptiness. Specified as a fraction of the
total frames. Fractions > 0 are supported only when the total number of frames is known. Default 0.

--qp, -q <integer>
Specify base quantization parameter for Constant QP rate control. Using this option enables Constant QP rate
control. The specified QP is assigned to P slices. I and B slices are given QPs relative to P slices using param-
>rc.ipFactor and param->rc.pbFactor unless QP 0 is specified, in which case QP 0 is used for all slice types.
Note that QP 0 does not cause lossless encoding, it only disables quantization. Default disabled.

Range of values: an integer from 0 to 51

--lossless, --no-lossless
Enables true lossless coding by bypassing scaling, transform, quantization and in-loop filter processes. This is
used for ultra-high bitrates with zero loss of quality. Reconstructed output pictures are bit-exact to the input
pictures. Lossless encodes implicitly have no rate control, all rate control options are ignored. Slower presets
will generally achieve better compression efficiency (and generate smaller bitstreams). Default disabled.

--aq-mode <0|1|2|3>
Adaptive Quantization operating mode. Raise or lower per-block quantization based on complexity analysis of
the source image. The more complex the block, the more quantization is used. This offsets the tendency of the
encoder to spend too many bits on complex areas and not enough in flat areas.

0. disabled

1. AQ enabled

2.11. Quality, rate control and rate distortion options 23

x265

2. AQ enabled with auto-variance (default)

3. AQ enabled with auto-variance and bias to dark scenes. This is recommended for 8-bit encodes or low-bitrate
10-bit encodes, to prevent color banding/blocking.

--aq-strength <float>
Adjust the strength of the adaptive quantization offsets. Setting --aq-strength to 0 disables AQ. At aq-
modes 2 and 3, high aq-strengths will lead to high QP offsets resulting in a large difference in achieved bitrates.

Default 1.0. Range of values: 0.0 to 3.0

--hevc-aq
Enable adaptive quantization It scales the quantization step size according to the spatial activity of one coding
unit relative to frame average spatial activity. This AQ method utilizes the minimum variance of sub-unit in each
coding unit to represent the coding unit?s spatial complexity.

--qp-adaptation-range
Delta-QP range by QP adaptation based on a psycho-visual model.

Default 1.0. Range of values: 1.0 to 6.0

--aq-motion, --no-aq-motion
Adjust the AQ offsets based on the relative motion of each block with respect to the motion of the frame. The
more the relative motion of the block, the more quantization is used. Default disabled. Experimental Feature

--qg-size <64|32|16|8>
Enable adaptive quantization for sub-CTUs. This parameter specifies the minimum CU size at which QP can be
adjusted, ie. Quantization Group size. Allowed range of values are 64, 32, 16, 8 provided this falls within the
inclusive range [maxCUSize, minCUSize]. Default: same as maxCUSize

--cutree, --no-cutree
Enable the use of lookahead’s lowres motion vector fields to determine the amount of reuse of each block to
tune adaptive quantization factors. CU blocks which are heavily reused as motion reference for later frames are
given a lower QP (more bits) while CU blocks which are quickly changed and are not referenced are given less
bits. This tends to improve detail in the backgrounds of video with less detail in areas of high motion. Default
enabled

--pass <integer>
Enable multi-pass rate control mode. Input is encoded multiple times, storing the encoded information of each
pass in a stats file from which the consecutive pass tunes the qp of each frame to improve the quality of the
output. Default disabled

1. First pass, creates stats file

2. Last pass, does not overwrite stats file

3. Nth pass, overwrites stats file

Range of values: 1 to 3

--stats <filename>
Specify file name of of the multi-pass stats file. If unspecified the encoder will use x265_2pass.log

--slow-firstpass, --no-slow-firstpass
Enable first pass encode with the exact settings specified. The quality in subsequent multi-pass encodes is better
(compared to first pass) when the settings match across each pass. Default enabled.

When slow first pass is disabled, a turbo encode with the following go-fast options is used to improve perfor-
mance:

• --fast-intra

• --no-rect

24 Chapter 2. Command Line Options

x265

• --no-amp

• --early-skip

• --ref = 1

• --max-merge = 1

• --me = DIA

• --subme = MIN(2, --subme)

• --rd = MIN(2, --rd)

--multi-pass-opt-analysis, --no-multi-pass-opt-analysis
Enable/Disable multipass analysis refinement along with multipass ratecontrol. Based on the information stored
in pass 1, in subsequent passes analysis data is refined and also redundant steps are skipped. In pass 1 analysis
information like motion vector, depth, reference and prediction modes of the final best CTU partition is stored
for each CTU. Multipass analysis refinement cannot be enabled when ‘analysis-save/analysis-load’ option is
enabled and both will be disabled when enabled together. This feature requires ‘pmode/pme’ to be disabled and
hence pmode/pme will be disabled when enabled at the same time.

Default: disabled.

--multi-pass-opt-distortion, --no-multi-pass-opt-distortion
Enable/Disable multipass refinement of qp based on distortion data along with multipass ratecontrol. In pass
1 distortion of best CTU partition is stored. CTUs with high distortion get lower(negative)qp offsets and vice-
versa for low distortion CTUs in pass 2. This helps to improve the subjective quality. Multipass refinement
of qp cannot be enabled when ‘analysis-save/analysis-load’ option is enabled and both will be disabled when
enabled together. ‘multi-pass-opt-distortion’ requires ‘pmode/pme’ to be disabled and hence pmode/pme will
be disabled when enabled along with it.

Default: disabled.

--strict-cbr, --no-strict-cbr
Enables stricter conditions to control bitrate deviance from the target bitrate in ABR mode. Bit rate adherence
is prioritised over quality. Rate tolerance is reduced to 50%. Default disabled.

This option is for use-cases which require the final average bitrate to be within very strict limits of the target;
preventing overshoots, while keeping the bit rate within 5% of the target setting, especially in short segment
encodes. Typically, the encoder stays conservative, waiting until there is enough feedback in terms of encoded
frames to control QP. strict-cbr allows the encoder to be more aggressive in hitting the target bitrate even for
short segment videos.

--cbqpoffs <integer>
Offset of Cb chroma QP from the luma QP selected by rate control. This is a general way to spend more or less
bits on the chroma channel. Default 0

Range of values: -12 to 12

--crqpoffs <integer>
Offset of Cr chroma QP from the luma QP selected by rate control. This is a general way to spend more or less
bits on the chroma channel. Default 0

Range of values: -12 to 12

--ipratio <float>
QP ratio factor between I and P slices. This ratio is used in all of the rate control modes. Some --tune options
may change the default value. It is not typically manually specified. Default 1.4

--pbratio <float>
QP ratio factor between P and B slices. This ratio is used in all of the rate control modes. Some --tune options
may change the default value. It is not typically manually specified. Default 1.3

2.11. Quality, rate control and rate distortion options 25

x265

--qcomp <float>
qComp sets the quantizer curve compression factor. It weights the frame quantizer based on the complexity of
residual (measured by lookahead). It’s value must be between 0.5 and 1.0. Default value is 0.6. Increasing it to
1.0 will effectively generate CQP.

--qpstep <integer>
The maximum single adjustment in QP allowed to rate control. Default 4

--qpmin <integer>
sets a hard lower limit on QP allowed to ratecontrol. Default 0

--qpmax <integer>
sets a hard upper limit on QP allowed to ratecontrol. Default 69

--rc-grain, --no-rc-grain
Enables a specialised ratecontrol algorithm for film grain content. This parameter strictly minimises QP fluctu-
ations within and across frames and removes pulsing of grain. Default disabled. Enabled when :option:’–tune’
grain is applied. It is highly recommended that this option is used through the tune grain feature where a
combination of param options are used to improve visual quality.

--const-vbv, --no-const-vbv
Enables VBV algorithm to be consistent across runs. Default disabled. Enabled when :option:’–tune’ grain is
applied.

--qblur <float>
Temporally blur quants. Default 0.5

--cplxblur <float>
temporally blur complexity. default 20

--zones <zone0>/<zone1>/...
Tweak the bitrate of regions of the video. Each zone takes the form:

<start frame>,<end frame>,<option> where <option> is either q=<integer> (force QP) or b=<float> (bitrate
multiplier).

If zones overlap, whichever comes later in the list takes precedence. Default none

--zonefile <filename>
Specify a text file which contains the boundaries of the zones where each of zones are configurable. The format
of each line is:

<frame number> <options to be configured>

The frame number indicates the beginning of a zone. The options following this is applied until another zone
begins. The reconfigurable options can be spcified as –<feature name> <feature value>

CLI ONLY

2.12 Quantization Options

Note that rate-distortion optimized quantization (RDOQ) is enabled implicitly at --rd 4, 5, and 6 and disabled
implicitly at all other levels.

--signhide, --no-signhide
Hide sign bit of one coeff per TU (rdo). The last sign is implied. This requires analyzing all the coefficients to
determine if a sign must be toggled, and then to determine which one can be toggled with the least amount of
distortion. Default enabled

26 Chapter 2. Command Line Options

x265

--qpfile <filename>
Specify a text file which contains frametypes and QPs for some or all frames. The format of each line is:

framenumber frametype QP

Frametype can be one of [I,i,K,P,B,b]. B is a referenced B frame, b is an unreferenced B frame. I is a keyframe
(random access point) while i is an I frame that is not a keyframe (references are not broken). K implies I if
closed_gop option is enabled, and i otherwise.

Specifying QP (integer) is optional, and if specified they are clamped within the encoder to qpmin/qpmax.

--scaling-list <filename>
Quantization scaling lists. HEVC supports 6 quantization scaling lists to be defined; one each for Y, Cb, Cr for
intra prediction and one each for inter prediction.

x265 does not use scaling lists by default, but this can also be made explicit by --scaling-list off.

HEVC specifies a default set of scaling lists which may be enabled without requiring them to be signaled in the
SPS. Those scaling lists can be enabled via --scaling-list default.

All other strings indicate a filename containing custom scaling lists in the HM format. The encode will abort if
the file is not parsed correctly. Custom lists must be signaled in the SPS. A sample scaling list file is available
in the downloads page

--lambda-file <filename>
Specify a text file containing values for x265_lambda_tab and x265_lambda2_tab. Each table requires
MAX_MAX_QP+1 (70) float values.

The text file syntax is simple. Comma is considered to be white-space. All white-space is ignored. Lines must
be less than 2k bytes in length. Content following hash (#) characters are ignored. The values read from the file
are logged at --log-level debug.

Note that the lambda tables are process-global and so the new values affect all encoders running in the same
process.

Lambda values affect encoder mode decisions, the lower the lambda the more bits it will try to spend on signaling
information (motion vectors and splits) and less on residual. This feature is intended for experimentation.

--max-ausize-factor <float>
It controls the maximum AU size defined in specification. It represents the percentage of maximum AU size
used. Default is 1. Range is 0.5 to 1.

2.13 Loop filters

--deblock=<int>:<int>, --no-deblock
Toggle deblocking loop filter, optionally specify deblocking strength offsets.

<int>:<int> - parsed as tC offset and Beta offset <int>,<int> - parsed as tC offset and Beta offset <int> - both tC
and Beta offsets assigned the same value

If unspecified, the offsets default to 0. The offsets must be in a range of -6 (lowest strength) to 6 (highest
strength).

To disable the deblocking filter entirely, use –no-deblock or –deblock=false. Default enabled, with both offsets
defaulting to 0

If deblocking is disabled, or the offsets are non-zero, these changes from the default configuration are signaled
in the PPS.

--sao, --no-sao
Toggle Sample Adaptive Offset loop filter, default enabled

2.13. Loop filters 27

https://bitbucket.org/multicoreware/x265/downloads/reference_scalinglist.txt

x265

--sao-non-deblock, --no-sao-non-deblock
Specify how to handle depencency between SAO and deblocking filter. When enabled, non-deblocked pixels are
used for SAO analysis. When disabled, SAO analysis skips the right/bottom boundary areas. Default disabled

--limit-sao, --no-limit-sao
Limit SAO filter computation by early terminating SAO process based on inter prediction mode, CTU spatial-
domain correlations, and relations between luma and chroma. Default disabled

2.14 VUI (Video Usability Information) options

x265 emits a VUI with only the timing info by default. If the SAR is specified (or read from a Y4M header) it is also
included. All other VUI fields must be manually specified.

--sar <integer|w:h>
Sample Aspect Ratio, the ratio of width to height of an individual sample (pixel). The user may supply the
width and height explicitly or specify an integer from the predefined list of aspect ratios defined in the HEVC
specification. Default undefined (not signaled)

1. 1:1 (square)

2. 12:11

3. 10:11

4. 16:11

5. 40:33

6. 24:11

7. 20:11

8. 32:11

9. 80:33

10. 18:11

11. 15:11

12. 64:33

13. 160:99

14. 4:3

15. 3:2

16. 2:1

--display-window <left,top,right,bottom>
Define the (overscan) region of the image that does not contain information because it was added to achieve
certain resolution or aspect ratio (the areas are typically black bars). The decoder may be directed to crop away
this region before displaying the images via the --overscan option. Default undefined (not signaled).

Note that this has nothing to do with padding added internally by the encoder to ensure the pictures size is a
multiple of the minimum coding unit (4x4). That padding is signaled in a separate “conformance window” and
is not user-configurable.

--overscan <show|crop>
Specify whether it is appropriate for the decoder to display or crop the overscan area. Default unspecified (not
signaled)

28 Chapter 2. Command Line Options

x265

--videoformat <integer|string>
Specify the source format of the original analog video prior to digitizing and encoding. Default undefined (not
signaled)

0. component

1. pal

2. ntsc

3. secam

4. mac

5. undefined

--range <full|limited>
Specify output range of black level and range of luma and chroma signals. Default undefined (not signaled)

--colorprim <integer|string>
Specify color primaries to use when converting to RGB. Default undefined (not signaled)

1. bt709

2. unknown

3. reserved

4. bt470m

5. bt470bg

6. smpte170m

7. smpte240m

8. film

9. bt2020

10. smpte428

11. smpte431

12. smpte432

--transfer <integer|string>
Specify transfer characteristics. Default undefined (not signaled)

1. bt709

2. unknown

3. reserved

4. bt470m

5. bt470bg

6. smpte170m

7. smpte240m

8. linear

9. log100

10. log316

11. iec61966-2-4

2.14. VUI (Video Usability Information) options 29

x265

12. bt1361e

13. iec61966-2-1

14. bt2020-10

15. bt2020-12

16. smpte2084

17. smpte428

18. arib-std-b67

--colormatrix <integer|string>
Specify color matrix setting i.e set the matrix coefficients used in deriving the luma and chroma. Default
undefined (not signaled)

0. GBR

1. bt709

2. undef

3. reserved

4. fcc

5. bt470bg

6. smpte170m

7. smpte240m

8. YCgCo

9. bt2020nc

10. bt2020c

11. smpte2085

12. chroma-derived-nc

13. chroma-derived-c

14. ictcp

--chromaloc <0..5>
Specify chroma sample location for 4:2:0 inputs. Consult the HEVC specification for a description of these
values. Default undefined (not signaled)

--master-display <string>
SMPTE ST 2086 mastering display color volume SEI info, specified as a string which is parsed when the stream
header SEI are emitted. The string format is “G(%hu,%hu)B(%hu,%hu)R(%hu,%hu)WP(%hu,%hu)L(%u,%u)”
where %hu are unsigned 16bit integers and %u are unsigned 32bit integers. The SEI includes X,Y display
primaries for RGB channels and white point (WP) in units of 0.00002 and max,min luminance (L) values in
units of 0.0001 candela per meter square. Applicable for HDR content.

Example for a P3D65 1000-nits monitor, where G(x=0.265, y=0.690), B(x=0.150, y=0.060), R(x=0.680,
y=0.320), WP(x=0.3127, y=0.3290), L(max=1000, min=0.0001):

G(13250,34500)B(7500,3000)R(34000,16000)WP(15635,16450)L(10000000,1)

Note that this string value will need to be escaped or quoted to protect against shell expansion on many platforms.
No default.

30 Chapter 2. Command Line Options

x265

--max-cll <string>
Maximum content light level (MaxCLL) and maximum frame average light level (MaxFALL) as required by
the Consumer Electronics Association 861.3 specification.

Specified as a string which is parsed when the stream header SEI are emitted. The string format is “%hu,%hu”
where %hu are unsigned 16bit integers. The first value is the max content light level (or 0 if no maximum is
indicated), the second value is the maximum picture average light level (or 0). Applicable for HDR content.

Example for MaxCLL=1000 candela per square meter, MaxFALL=400 candela per square meter:

–max-cll “1000,400”

Note that this string value will need to be escaped or quoted to protect against shell expansion on many platforms.
No default.

--cll, --no-cll
Emit content light level SEI. Enabled automatically when --dolby-vision-profile 8.1 is specified.
When enabled, signals max-cll and max-fall as 0 if max-cll is unspecified. Default enabled.

--hdr, --no-hdr
Force signalling of HDR parameters in SEI packets. Enabled automatically when --master-display or
--max-cll is specified. Useful when there is a desire to signal 0 values for max-cll and max-fall. Default
disabled.

--hdr-opt, --no-hdr-opt
Add luma and chroma offsets for HDR/WCG content. Input video should be 10 bit 4:2:0. Applicable for HDR
content. It is recommended that AQ-mode be enabled along with this feature. Default disabled.

--dhdr10-info <filename>
Inserts tone mapping information as an SEI message. It takes as input, the path to the JSON file containing the
Creative Intent Metadata to be encoded as Dynamic Tone Mapping into the bitstream.

Click here for the syntax of the metadata file. A sample JSON file is available in the downloads page

--dhdr10-opt, --no-dhdr10-opt
Limits the frames for which tone mapping information is inserted as SEI message. Inserts SEI only for IDR
frames and for frames where tone mapping information has changed.

--min-luma <integer>
Minimum luma value allowed for input pictures. Any values below min-luma are clipped. No default.

--max-luma <integer>
Maximum luma value allowed for input pictures. Any values above max-luma are clipped. No default.

--nalu-file <filename>
Text file containing userSEI in POC order : <POC><space><PREFIX><space><NAL UNIT TYPE>/<SEI
TYPE><space><SEI Payload> Parse the input file specified and inserts SEI messages into the bitstream. Cur-
rently, we support only PREFIX SEI messages. This is an “application-only” feature.

--atc-sei <integer>
Emit the alternative transfer characteristics SEI message where the integer is the preferred transfer characteris-
tics. Required for HLG (Hybrid Log Gamma) signalling. Not signalled by default.

--pic-struct <integer>
Set the picture structure and emits it in the picture timing SEI message. Values in the range 0..12. See D.3.3 of
the HEVC spec. for a detailed explanation. Required for HLG (Hybrid Log Gamma) signalling. Not signalled
by default.

2.14. VUI (Video Usability Information) options 31

https://www.sra.samsung.com/assets/User-data-registered-itu-t-t35-SEI-message-for-ST-2094-40-v1.1.pdf
https://bitbucket.org/multicoreware/x265/downloads/DCIP3_4K_to_400_dynamic.json

x265

2.15 Bitstream options

--annexb, --no-annexb
If enabled, x265 will produce Annex B bitstream format, which places start codes before NAL. If disabled,
x265 will produce file format, which places length before NAL. x265 CLI will choose the right option based on
output format. Default enabled

API ONLY

--repeat-headers, --no-repeat-headers
If enabled, x265 will emit VPS, SPS, and PPS headers with every keyframe. This is intended for use when you
do not have a container to keep the stream headers for you and you want keyframes to be random access points.
Default disabled

--aud, --no-aud
Emit an access unit delimiter NAL at the start of each slice access unit. If --repeat-headers is not enabled
(indicating the user will be writing headers manually at the start of the stream) the very first AUD will be skipped
since it cannot be placed at the start of the access unit, where it belongs. Default disabled

--hrd, --no-hrd
Enable the signalling of HRD parameters to the decoder. The HRD parameters are carried by the Buffering
Period SEI messages and Picture Timing SEI messages providing timing information to the decoder. Default
disabled

--hrd-concat, --no-hrd-concat
Set concantenation flag for the first keyframe in the HRD buffering period SEI. This is to signal the decoder if
splicing is performed during bitstream generation. Recommended to enable this option during chunked encod-
ing, except for the first chunk. Default disabled.

--dolby-vision-profile <integer|float>
Generate bitstreams confirming to the specified Dolby Vision profile, note that 0x7C01 makes RPU appear to
be an unspecified NAL type in HEVC stream. If BL is backward compatible, Dolby Vision single layer VES
will be equivalent to a backward compatible BL VES on legacy device as RPU will be ignored.

The value is specified as a float or as an integer with the profile times 10, for example profile 5 is specified as
“5” or “5.0” or “50”.

Currently only profile 5, profile 8.1 and profile 8.2 enabled, Default 0 (disabled)

--dolby-vision-rpu <filename>
File containing Dolby Vision RPU metadata. If given, x265’s Dolby Vision metadata parser will fill the RPU
field of input pictures with the metadata read from the file. The library will interleave access units with RPUs in
the bitstream. Default NULL (disabled).

CLI ONLY

--info, --no-info
Emit an informational SEI with the stream headers which describes the encoder version, build info, and encode
parameters. This is very helpful for debugging purposes but encoding version numbers and build info could
make your bitstreams diverge and interfere with regression testing. Default enabled

--hash <integer>
Emit decoded picture hash SEI, so the decoder may validate the reconstructed pictures and detect data loss. Also
useful as a debug feature to validate the encoder state. Default None

1. MD5

2. CRC

3. Checksum

32 Chapter 2. Command Line Options

x265

--temporal-layers,--no-temporal-layers
Enable a temporal sub layer. All referenced I/P/B frames are in the base layer and all unreferenced B frames are
placed in a temporal enhancement layer. A decoder may chose to drop the enhancement layer and only decode
and display the base layer slices.

If used with a fixed GOP (--b-adapt 0) and --bframes 3 then the two layers evenly split the frame rate,
with a cadence of PbBbP. You probably also want --no-scenecut and a keyframe interval that is a multiple
of 4.

--log2-max-poc-lsb <integer>
Maximum of the picture order count. Default 8

--vui-timing-info, --no-vui-timing-info
Emit VUI timing info in bitstream. Default enabled.

--vui-hrd-info, --no-vui-hrd-info
Emit VUI HRD info in bitstream. Default enabled when --hrd is enabled.

--opt-qp-pps, --no-opt-qp-pps
Optimize QP in PPS (instead of default value of 26) based on the QP values observed in last GOP. Default
disabled.

--opt-ref-list-length-pps, --no-opt-ref-list-length-pps
Optimize L0 and L1 ref list length in PPS (instead of default value of 0) based on the lengths observed in the
last GOP. Default disabled.

--multi-pass-opt-rps, --no-multi-pass-opt-rps
Enable storing commonly used RPS in SPS in multi pass mode. Default disabled.

--opt-cu-delta-qp, --no-opt-cu-delta-qp
Optimize CU level QPs by pulling up lower QPs to value close to meanQP thereby minimizing fluctuations in
deltaQP signalling. Default disabled.

Only effective at RD levels 5 and 6

--idr-recovery-sei, --no-idr-recovery-sei
Emit RecoveryPoint info as sei in bitstream for each IDR frame. Default disabled.

--single-sei, --no-single-sei
Emit SEI messages in a single NAL unit instead of multiple NALs. Default disabled.
When HRD SEI is enabled the HM decoder will throw a warning.

2.16 DCT Approximations

--lowpass-dct
If enabled, x265 will use low-pass subband dct approximation instead of the standard dct for 16x16 and 32x32
blocks. This approximation is less computational intensive but it generates truncated coefficient matrixes for the
transformed block. Empirical analysis shows marginal loss in compression and performance gains up to 10%,
paticularly at moderate bit-rates.

This approximation should be considered for platforms with performance and time constrains.

Default disabled. Experimental feature

2.16. DCT Approximations 33

x265

2.17 Debugging options

--recon, -r <filename>
Output file containing reconstructed images in display order. If the file extension is “.y4m” the file will contain
a YUV4MPEG2 stream header and frame headers. Otherwise it will be a raw YUV file in the encoder’s internal
bit depth.

CLI ONLY

--recon-depth <integer>
Bit-depth of output file. This value defaults to the internal bit depth and currently cannot to be modified.

CLI ONLY

--recon-y4m-exec <string>
If you have an application which can play a Y4MPEG stream received on stdin, the x265 CLI can feed it
reconstructed pictures in display order. The pictures will have no timing info, obviously, so the picture timing
will be determined primarily by encoding elapsed time and latencies, but it can be useful to preview the pictures
being output by the encoder to validate input settings and rate control parameters.

Example command for ffplay (assuming it is in your PATH):

–recon-y4m-exec “ffplay -i pipe:0 -autoexit”

CLI ONLY

2.18 SVT-HEVC Encoder Options

This section lists options which are SVT-HEVC encoder specific. See section svthevc for more details.

--svt, --no-svt
Enable SVT-HEVC encoder if x265 is built with SVT-HEVC library. Default disabled.

--svt-hme, --no-svt-hme
Enable Hierarchical Motion Estimation(HME) in SVT-HEVC. Default enabled.

CLI_ONLY

--svt-search-width <integer>
Search Area Width used during motion estimation. It depends on input resolution. Values: [1-256]

CLI_ONLY

--svt-search-height <integer>
Search Area Height used during motion estimation. It depends on input resolution. Values: [1-256]

CLI_ONLY

--svt-compressed-ten-bit-format, --no-svt-compressed-ten-bit-format
In order to reduce the size of input YUV and to increase channel density, SVT-HEVC accetps inputs in
compressed-ten-bit-format. The conversion between yuv420p10le and compressed ten bit format is a lossless
operation. For more details about the conversion refer ‘here<https://github.com/intel/SVT-HEVC/blob/master/
Docs/SVT-HEVC_Encoder_User_Guide.pdf>’_.

CLI_ONLY

--svt-speed-control, --no-svt-speed-control
Enable speed control functionality to achieve real time encoding speed defined by --fps. Default disabled.

CLI_ONLY

34 Chapter 2. Command Line Options

https://github.com/intel/SVT-HEVC/blob/master/Docs/SVT-HEVC_Encoder_User_Guide.pdf
https://github.com/intel/SVT-HEVC/blob/master/Docs/SVT-HEVC_Encoder_User_Guide.pdf

x265

--svt-preset-tuner <integer>
SVT-HEVC exposes 13 presets. Presets [3-12] of SVT-HEVC is mapped to x265’s presets [placebo-ultrafast].
Ultrafast is mapped to preset(12) of SVT-HEVC, superfast to preset(11), placebo to preset(3) and so on. svt-
preset-tuner works only on top of placebo preset and maps to presets (0-2) of SVT-HEVC.

Values: [0-2]

CLI_ONLY

--svt-hierarchical-level <integer>
Enables multiple hierarchical levels in SVT-HEVC. Accepts values in the range [0-3]. 0 - Flat 1 - 2-Level
Hierarchy 2 - 3-Level Hierarchy 3 - 4-Level Hierarchy

Default: 3

CLI_ONLY

--svt-base-layer-switch-mode <integer>
Choose type of slices to be in base layer. Accepts values 0,1. 0 - Use B-frames in the base layer 1 - Use P-frames
in the base layer

Default: 0

CLI_ONLY

--svt-pred-struct <integer>
Prediction structure forms the basis in deciding the GOP structure. SVT-HEVC supports Low delay(P/B) and
random access prediction structure. In a low delay structure, pictures within a mini-gop can only refer to the
previous pictures in display order. In other words, picture with display order N can only refer to pictures of
display order lower than N. In random acccess method, pictures can be referenced from both the directions. It
accepts values in the range [0-2]

0 - Low Delay P 1 - Low Delay B 2 - Random Access

Default: 2

CLI_ONLY

--svt-fps-in-vps, --no-svt-fps-in-vps
Enable sending timing info in VPS. Default disabled.

CLI_ONLY

2.18. SVT-HEVC Encoder Options 35

x265

36 Chapter 2. Command Line Options

CHAPTER 3

Application Programming Interface

3.1 Introduction

x265 is written primarily in C++ and x86 assembly language but the public facing programming interface is C for the
widest possible portability. This C interface is wholly defined within x265.h in the source/ folder of our source tree.
All of the functions and variables and enumerations meant to be used by the end-user are present in this header.

Where possible, x265 has tried to keep its public API as close as possible to x264’s public API. So those familiar with
using x264 through its C interface will find x265 quite familiar.

This file is meant to be read in-order; the narrative follows linearly through the various sections

3.2 Build Considerations

The choice of Main or Main10 profile encodes is made at compile time; the internal pixel depth influences a great
deal of variable sizes and thus 8 and 10bit pixels are handled as different build options (primarily to maintain the
performance of the 8bit builds). libx265 exports a variable x265_max_bit_depth which indicates how the library was
compiled (it will contain a value of 8 or 10). Further, x265_version_str is a pointer to a string indicating the version of
x265 which was compiled, and x265_build_info_str is a pointer to a string identifying the compiler and build options.

Note: x265_version_str is only updated when cmake runs. If you are making binaries for others to use, it is
recommended to run cmake prior to make in your build scripts.

x265 will accept input pixels of any depth between 8 and 16 bits regardless of the depth of its internal pixels (8 or 10).
It will shift and mask input pixels as required to reach the internal depth. If downshifting is being performed using
our CLI application (to 8 bits), the --dither option may be enabled to reduce banding. This feature is not available
through the C interface.

37

x265

3.3 Encoder

The primary object in x265 is the encoder object, and this is represented in the public API as an opaque typedef
x265_encoder. Pointers of this type are passed to most encoder functions.

A single encoder generates a single output bitstream from a sequence of raw input pictures. Thus if you need multiple
output bitstreams you must allocate multiple encoders. You may pass the same input pictures to multiple encoders, the
encode function does not modify the input picture structures (the pictures are copied into the encoder as the first step
of encode).

Encoder allocation is a reentrant function, so multiple encoders may be safely allocated in a single process. The
encoder access functions are not reentrant for a single encoder, so the recommended use case is to allocate one client
thread per encoder instance (one thread for all encoder instances is possible, but some encoder access functions are
blocking and thus this would be less efficient).

Note: There is one caveat to having multiple encoders within a single process. All of the encoders must use the same
maximum CTU size because many global variables are configured based on this size. Encoder allocation will fail if
a mis-matched CTU size is attempted. If no encoders are open, x265_cleanup() can be called to reset the configured
CTU size so a new size can be used.

An encoder is allocated by calling x265_encoder_open():

/* x265_encoder_open:

* create a new encoder handler, all parameters from x265_param are copied */
x265_encoder* x265_encoder_open(x265_param *);

The returned pointer is then passed to all of the functions pertaining to this encode. A large amount of memory is
allocated during this function call, but the encoder will continue to allocate memory as the first pictures are passed to
the encoder; until its pool of picture structures is large enough to handle all of the pictures it must keep internally. The
pool size is determined by the lookahead depth, the number of frame threads, and the maximum number of references.

As indicated in the comment, x265_param is copied internally so the user may release their copy after allocating the
encoder. Changes made to their copy of the param structure have no affect on the encoder after it has been allocated.

3.4 Param

The x265_param structure describes everything the encoder needs to know about the input pictures and the output
bitstream and most everything in between.

The recommended way to handle these param structures is to allocate them from libx265 via:

/* x265_param_alloc:

* Allocates an x265_param instance. The returned param structure is not

* special in any way, but using this method together with x265_param_free()

* and x265_param_parse() to set values by name allows the application to treat

* x265_param as an opaque data struct for version safety */
x265_param *x265_param_alloc();

In this way, your application does not need to know the exact size of the param structure (the build of x265 could
potentially be a bit newer than the copy of x265.h that your application compiled against).

Next you perform the initial rough cut configuration of the encoder by chosing a performance preset and optional tune
factor x265_preset_names and x265_tune_names respectively hold the string names of the presets and tune factors
(see presets for more detail on presets and tune factors):

38 Chapter 3. Application Programming Interface

x265

/* returns 0 on success, negative on failure (e.g. invalid preset/tune name). */
int x265_param_default_preset(x265_param *, const char *preset, const char *tune);

Now you may optionally specify a profile. x265_profile_names contains the string names this function accepts:

/* (can be NULL, in which case the function will do nothing)

* returns 0 on success, negative on failure (e.g. invalid profile name). */
int x265_param_apply_profile(x265_param *, const char *profile);

Finally you configure any remaining options by name using repeated calls to:

/* x265_param_parse:

* set one parameter by name.

* returns 0 on success, or returns one of the following errors.

* note: BAD_VALUE occurs only if it can't even parse the value,

* numerical range is not checked until x265_encoder_open().

* value=NULL means "true" for boolean options, but is a BAD_VALUE for non-booleans.
→˓*/
#define X265_PARAM_BAD_NAME (-1)
#define X265_PARAM_BAD_VALUE (-2)
int x265_param_parse(x265_param *p, const char *name, const char *value);

See string options for the list of options (and their descriptions) which can be set by x265_param_parse().

After the encoder has been created, you may release the param structure:

/* x265_param_free:

* Use x265_param_free() to release storage for an x265_param instance

* allocated by x265_param_alloc() */
void x265_param_free(x265_param *);

Note: Using these methods to allocate and release the param structures helps future-proof your code in many ways,
but the x265 API is versioned in such a way that we prevent linkage against a build of x265 that does not match the
version of the header you are compiling against (unless you use x265_api_query() to acquire the library’s interfaces).
This is function of the X265_BUILD macro.

x265_encoder_parameters() may be used to get a copy of the param structure from the encoder after it has been
opened, in order to see the changes made to the parameters for auto-detection and other reasons:

/* x265_encoder_parameters:

* copies the current internal set of parameters to the pointer provided

* by the caller. useful when the calling application needs to know

* how x265_encoder_open has changed the parameters.

* note that the data accessible through pointers in the returned param struct

* (e.g. filenames) should not be modified by the calling application. */
void x265_encoder_parameters(x265_encoder *, x265_param *);

x265_encoder_reconfig() may be used to reconfigure encoder parameters mid-encode:

/* x265_encoder_reconfig:

* used to modify encoder parameters.

* various parameters from x265_param are copied.

* this takes effect immediately, on whichever frame is encoded next;

* returns negative on parameter validation error, 0 on successful reconfigure

* and 1 when a reconfigure is already in progress.

(continues on next page)

3.4. Param 39

x265

(continued from previous page)

*
* not all parameters can be changed; see the actual function for a

* detailed breakdown. since not all parameters can be changed, moving

* from preset to preset may not always fully copy all relevant parameters,

* but should still work usably in practice. however, more so than for

* other presets, many of the speed shortcuts used in ultrafast cannot be

* switched out of; using reconfig to switch between ultrafast and other

* presets is not recommended without a more fine-grained breakdown of

* parameters to take this into account. */
int x265_encoder_reconfig(x265_encoder *, x265_param *);

x265_get_slicetype_poc_and_scenecut() may be used to fetch slice type, poc and scene cut information mid-encode:

/* x265_get_slicetype_poc_and_scenecut:

* get the slice type, poc and scene cut information for the current frame,

* returns negative on error, 0 on success.

* This API must be called after(poc >= lookaheadDepth + bframes + 2) condition
→˓check. */
int x265_get_slicetype_poc_and_scenecut(x265_encoder *encoder, int *slicetype, int
→˓*poc, int* sceneCut);

x265_get_ref_frame_list() may be used to fetch forward and backward refrence list:

/* x265_get_ref_frame_list:

* returns negative on error, 0 when access unit were output.

* This API must be called after(poc >= lookaheadDepth + bframes + 2) condition
→˓check */
int x265_get_ref_frame_list(x265_encoder *encoder, x265_picyuv**, x265_picyuv**, int,
→˓ int, int*, int*);

x265_encoder_ctu_info may be used to provide additional CTU-specific information to the encoder:

/* x265_encoder_ctu_info:

* Copy CTU information such as ctu address and ctu partition structure of all

* CTUs in each frame. The function is invoked only if "--ctu-info" is enabled and

* the encoder will wait for this copy to complete if enabled.*/
int x265_encoder_ctu_info(x265_encoder *encoder, int poc, x265_ctu_info_t** ctu);

x265_set_analysis_data() may be used to recive analysis information from external application:

/* x265_set_analysis_data:

* set the analysis data. The incoming analysis_data structure is assumed to be
→˓AVC-sized blocks.

* returns negative on error, 0 access unit were output.*/
int x265_set_analysis_data(x265_encoder *encoder, x265_analysis_data *analysis_data,
→˓int poc, uint32_t cuBytes);

x265_alloc_analysis_data() may be used to allocate memory for the x265_analysis_data:

/* x265_alloc_analysis_data:

* Allocate memory for the x265_analysis_data object's internal structures. */
void x265_alloc_analysis_data(x265_param *param, x265_analysis_data* analysis);

x265_free_analysis_data() may be used to free memory for the x265_analysis_data:

40 Chapter 3. Application Programming Interface

x265

/* x265_free_analysis_data:

* Free the allocated memory for x265_analysis_data object's internal structures.
→˓*/
void x265_free_analysis_data(x265_param *param, x265_analysis_data* analysis);

3.5 Pictures

Raw pictures are passed to the encoder via the x265_picture structure. Just like the param structure we recommend
you allocate this structure from the encoder to avoid potential size mismatches:

/* x265_picture_alloc:

* Allocates an x265_picture instance. The returned picture structure is not

* special in any way, but using this method together with x265_picture_free()

* and x265_picture_init() allows some version safety. New picture fields will

* always be added to the end of x265_picture */
x265_picture *x265_picture_alloc();

Regardless of whether you allocate your picture structure this way or whether you simply declare it on the stack, your
next step is to initialize the structure via:

/***
* Initialize an x265_picture structure to default values. It sets the pixel

* depth and color space to the encoder's internal values and sets the slice

* type to auto - so the lookahead will determine slice type.

*/
void x265_picture_init(x265_param *param, x265_picture *pic);

x265 does not perform any color space conversions, so the raw picture’s color space (chroma sampling) must match
the color space specified in the param structure used to allocate the encoder. x265_picture_init initializes this field to
the internal color space and it is best to leave it unmodified.

The picture bit depth is initialized to be the encoder’s internal bit depth but this value should be changed to the actual
depth of the pixels being passed into the encoder. If the picture bit depth is more than 8, the encoder assumes two
bytes are used to represent each sample (little-endian shorts).

The user is responsible for setting the plane pointers and plane strides (in units of bytes, not pixels). The presentation
time stamp (pts) is optional, depending on whether you need accurate decode time stamps (dts) on output.

If you wish to override the lookahead or rate control for a given picture you may specify a slicetype other than
X265_TYPE_AUTO, or a forceQP value other than 0.

x265 does not modify the picture structure provided as input, so you may reuse a single x265_picture for all pictures
passed to a single encoder, or even all pictures passed to multiple encoders.

Structures allocated from the library should eventually be released:

/* x265_picture_free:

* Use x265_picture_free() to release storage for an x265_picture instance

* allocated by x265_picture_alloc() */
void x265_picture_free(x265_picture *);

3.5. Pictures 41

x265

3.6 Analysis Buffers

Analysis information can be saved and reused to between encodes of the same video sequence (generally for multiple
bitrate encodes). The best results are attained by saving the analysis information of the highest bitrate encode and
reuse it in lower bitrate encodes.

When saving or loading analysis data, buffers must be allocated for every picture passed into the encoder using:

/* x265_alloc_analysis_data:

* Allocate memory to hold analysis meta data, returns 1 on success else 0 */
int x265_alloc_analysis_data(x265_picture*);

Note that this is very different from the typical semantics of x265_picture, which can be reused many times. The
analysis buffers must be re-allocated for every input picture.

Analysis buffers passed to the encoder are owned by the encoder until they pass the buffers back via an output
x265_picture. The user is responsible for releasing the buffers when they are finished with them via:

/* x265_free_analysis_data:

* Use x265_free_analysis_data to release storage of members allocated by

* x265_alloc_analysis_data */
void x265_free_analysis_data(x265_picture*);

3.7 Encode Process

The output of the encoder is a series of NAL packets, which are always returned concatenated in consecutive memory.
HEVC streams have SPS and PPS and VPS headers which describe how the following packets are to be decoded. If
you specified --repeat-headers then those headers will be output with every keyframe. Otherwise you must
explicitly query those headers using:

/* x265_encoder_headers:

* return the SPS and PPS that will be used for the whole stream.

* *pi_nal is the number of NAL units outputted in pp_nal.

* returns negative on error, total byte size of payload data on success

* the payloads of all output NALs are guaranteed to be sequential in memory. */
int x265_encoder_headers(x265_encoder *, x265_nal **pp_nal, uint32_t *pi_nal);

Now we get to the main encode loop. Raw input pictures are passed to the encoder in display order via:

/* x265_encoder_encode:

* encode one picture.

* *pi_nal is the number of NAL units outputted in pp_nal.

* returns negative on error, zero if no NAL units returned.

* the payloads of all output NALs are guaranteed to be sequential in memory. */
int x265_encoder_encode(x265_encoder *encoder, x265_nal **pp_nal, uint32_t *pi_nal,
→˓x265_picture *pic_in, x265_picture *pic_out);

These pictures are queued up until the lookahead is full, and then the frame encoders in turn are filled, and then finally
you begin receiving a output NALs (corresponding to a single output picture) with each input picture you pass into the
encoder.

Once the pipeline is completely full, x265_encoder_encode() will block until the next output picture is complete.

Note: Optionally, if the pointer of a second x265_picture structure is provided, the encoder will fill it with data
pertaining to the output picture corresponding to the output NALs, including the recontructed image, POC and decode

42 Chapter 3. Application Programming Interface

x265

timestamp. These pictures will be in encode (or decode) order. The encoder will also write corresponding frame
encode statistics into x265_frame_stats.

When the last of the raw input pictures has been sent to the encoder, x265_encoder_encode() must still be called
repeatedly with a pic_in argument of 0, indicating a pipeline flush, until the function returns a value less than or equal
to 0 (indicating the output bitstream is complete).

At any time during this process, the application may query running statistics from the encoder:

/* x265_encoder_get_stats:

* returns encoder statistics */
void x265_encoder_get_stats(x265_encoder *encoder, x265_stats *, uint32_t
→˓statsSizeBytes);

3.8 Cleanup

At the end of the encode, the application will want to trigger logging of the final encode statistics, if --csv had been
specified:

/* x265_encoder_log:

* write a line to the configured CSV file. If a CSV filename was not

* configured, or file open failed, this function will perform no write. */
void x265_encoder_log(x265_encoder *encoder, int argc, char **argv);

Finally, the encoder must be closed in order to free all of its resources. An encoder that has been flushed cannot be
restarted and reused. Once x265_encoder_close() has been called, the encoder handle must be discarded:

/* x265_encoder_close:

* close an encoder handler */
void x265_encoder_close(x265_encoder *);

When the application has completed all encodes, it should call x265_cleanup() to free process global, particularly if
a memory-leak detection tool is being used. x265_cleanup() also resets the saved CTU size so it will be possible to
create a new encoder with a different CTU size:

/* x265_cleanup:

* release library static allocations, reset configured CTU size */
void x265_cleanup(void);

3.9 VMAF (Video Multi-Method Assessment Fusion)

If you set the ENABLE_LIBVMAF cmake option to ON, then x265 will report per frame and aggregate VMAF score
for the given input and dump the scores in csv file. The user also need to specify the --recon in command line to
get the VMAF scores.

/* x265_calculate_vmafScore:

• returns VMAF score for the input video.

• This api must be called only after encoding was done. */

double x265_calculate_vmafscore(x265_param*, x265_vmaf_data*);

/* x265_calculate_vmaf_framelevelscore:

3.8. Cleanup 43

x265

• returns VMAF score for each frame in a given input video. The frame level VMAF score does
not include temporal scores. */

double x265_calculate_vmaf_framelevelscore(x265_vmaf_framedata*);

Note: When setting ENABLE_LIBVMAF cmake option to ON, it is recommended to also set ENABLE_SHARED
to OFF to prevent build problems. We only need the static library from these builds.

Binaries build with windows will not have VMAF support.

3.10 Multi-library Interface

If your application might want to make a runtime bit-depth selection, it will need to use one of these bit-depth intro-
spection interfaces which returns an API structure containing the public function entry points and constants.

Instead of directly using all of the x265_ methods documented above, you query an x265_api structure from your
libx265 and then use the function pointers of the same name (minus the x265_ prefix) within that structure. For
instance x265_param_default() becomes api->param_default().

3.10.1 x265_api_get

The first bit-depth instrospecton method is x265_api_get(). It designed for applications that might statically link with
libx265, or will at least be tied to a particular SONAME or API version:

/* x265_api_get:

* Retrieve the programming interface for a linked x265 library.

* May return NULL if no library is available that supports the

* requested bit depth. If bitDepth is 0, the function is guarunteed

* to return a non-NULL x265_api pointer from the system default

* libx265 */
const x265_api* x265_api_get(int bitDepth);

Like x265_encoder_encode(), this function has the build number automatically appended to the function name via
macros. This ties your application to a particular binary API version of libx265 (the one you compile against). If you
attempt to link with a libx265 with a different API version number, the link will fail.

Obviously this has no meaningful effect on applications which statically link to libx265.

3.10.2 x265_api_query

The second bit-depth introspection method is designed for applications which need more flexibility in API versioning.
If you use x265_api_query() and dynamically link to libx265 at runtime (using dlopen() on POSIX or LoadLibrary()
on Windows) your application is no longer directly tied to the API version that it was compiled against:

/* x265_api_query:

* Retrieve the programming interface for a linked x265 library, like

* x265_api_get(), except this function accepts X265_BUILD as the second

* argument rather than using the build number as part of the function name.

* Applications which dynamically link to libx265 can use this interface to

* query the library API and achieve a relative amount of version skew

* flexibility. The function may return NULL if the library determines that

* the apiVersion that your application was compiled against is not compatible

(continues on next page)

44 Chapter 3. Application Programming Interface

x265

(continued from previous page)

* with the library you have linked with.

*
* api_major_version will be incremented any time non-backward compatible

* changes are made to any public structures or functions. If

* api_major_version does not match X265_MAJOR_VERSION from the x265.h your

* application compiled against, your application must not use the returned

* x265_api pointer.

*
* Users of this API *must* also validate the sizes of any structures which

* are not treated as opaque in application code. For instance, if your

* application dereferences a x265_param pointer, then it must check that

* api->sizeof_param matches the sizeof(x265_param) that your application

* compiled with. */
const x265_api* x265_api_query(int bitDepth, int apiVersion, int* err);

A number of validations must be performed on the returned API structure in order to determine if it is safe for use by
your application. If you do not perform these checks, your application is liable to crash:

if (api->api_major_version != X265_MAJOR_VERSION) /* do not use */
if (api->sizeof_param != sizeof(x265_param)) /* do not use */
if (api->sizeof_picture != sizeof(x265_picture)) /* do not use */
if (api->sizeof_stats != sizeof(x265_stats)) /* do not use */
if (api->sizeof_zone != sizeof(x265_zone)) /* do not use */
etc.

Note that if your application does not directly allocate or dereference one of these structures, if it treats the structure
as opaque or does not use it at all, then it can skip the size check for that structure.

In particular, if your application uses api->param_alloc(), api->param_free(), api->param_parse(), etc and never di-
rectly accesses any x265_param fields, then it can skip the check on the sizeof(x265_parm) and thereby ignore changes
to that structure (which account for a large percentage of X265_BUILD bumps).

3.10.3 Build Implications

By default libx265 will place all of its internal C++ classes and functions within an x265 namespace and export all of
the C functions documented in this file. Obviously this prevents 8bit and 10bit builds of libx265 from being statically
linked into a single binary, all of those symbols would collide.

However, if you set the EXPORT_C_API cmake option to OFF then libx265 will use a bit-depth specific namespace
and prefix for its assembly functions (x265_8bit, x265_10bit or x265_12bit) and export no C functions.

In this way you can build one or more libx265 libraries without any exported C interface and link them into a libx265
build that does export a C interface. The build which exported the C functions becomes the default bit depth for the
combined library, and the other bit depths are available via the bit-depth introspection methods.

Note: When setting EXPORT_C_API cmake option to OFF, it is recommended to also set ENABLE_SHARED and
ENABLE_CLI to OFF to prevent build problems. We only need the static library from these builds.

If an application requests a bit-depth that is not supported by the default library or any of the additionally linked
libraries, the introspection method will fall-back to an attempt to dynamically bind a shared library with a name
appropriate for the requested bit-depth:

3.10. Multi-library Interface 45

x265

8-bit: libx265_main
10-bit: libx265_main10
12-bit: libx265_main12

If the profile-named library is not found, it will then try to bind a generic libx265 in the hopes that it is a multilib
library with all bit depths.

3.10.4 Packaging and Distribution

We recommend that packagers distribute a single combined shared/static library build which includes all the bit depth
libraries linked together. See the multilib scripts in our build/ subdirectories for examples of how to affect these
combined library builds. It is the packager’s discretion which bit-depth exports the public C functions and thus
becomes the default bit-depth for the combined library.

Note: Windows packagers might want to build libx265 with WINXP_SUPPORT enabled. This makes the resulting
binaries functional on XP and Vista. Without this flag, the minimum supported host O/S is Windows 7. Also note that
binaries built with WINXP_SUPPORT will not have NUMA support and they will have slightly less performance.

STATIC_LINK_CRT is also recommended so end-users will not need to install any additional MSVC C runtime
libraries.

46 Chapter 3. Application Programming Interface

CHAPTER 4

Threading

4.1 Thread Pools

x265 creates one or more thread pools per encoder, one pool per NUMA node (typically a CPU socket). --pools
specifies the number of pools and the number of threads per pool the encoder will allocate. By default x265 allocates
one thread per (hyperthreaded) CPU core on each NUMA node.

If you are running multiple encoders on a system with multiple NUMA nodes, it is recommended to isolate each of
them to a single node in order to avoid the NUMA overhead of remote memory access.

Work distribution is job based. Idle worker threads scan the job providers assigned to their thread pool for jobs to
perform. When no jobs are available, the idle worker threads block and consume no CPU cycles.

Objects which desire to distribute work to worker threads are known as job providers (and they derive from the
JobProvider class). The thread pool has a method to poke awake a blocked idle thread, and job providers are recom-
mended to call this method when they make new jobs available.

Worker jobs are not allowed to block except when absolutely necessary for data locking. If a job becomes blocked,
the work function is expected to drop that job so the worker thread may go back to the pool and find more work.

On Windows, the native APIs offer sufficient functionality to discover the NUMA topology and enforce the thread
affinity that libx265 needs (so long as you have not chosen to target XP or Vista), but on POSIX systems it relies
on libnuma for this functionality. If your target POSIX system is single socket, then building without libnuma is a
perfectly reasonable option, as it will have no effect on the runtime behavior. On a multiple-socket system, a POSIX
build of libx265 without libnuma will be less work efficient, but will still function correctly. You lose the work isolation
effect that keeps each frame encoder from only using the threads of a single socket and so you incur a heavier context
switching cost.

4.2 Wavefront Parallel Processing

New with HEVC, Wavefront Parallel Processing allows each row of CTUs to be encoded in parallel, so long as each
row stays at least two CTUs behind the row above it, to ensure the intra references and other data of the blocks above
and above-right are available. WPP has almost no effect on the analysis and compression of each CTU and so it has

47

x265

a very small impact on compression efficiency relative to slices or tiles. The compression loss from WPP has been
found to be less than 1% in most of our tests.

WPP has three effects which can impact efficiency. The first is the row starts must be signaled in the slice header,
the second is each row must be padded to an even byte in length, and the third is the state of the entropy coder is
transferred from the second CTU of each row to the first CTU of the row below it. In some conditions this transfer of
state actually improves compression since the above-right state may have better locality than the end of the previous
row.

Parabola Research have published an excellent HEVC animation which visualizes WPP very well. It even correctly
visualizes some of WPPs key drawbacks, such as:

1. the low thread utilization at the start and end of each frame

2. a difficult block may stall the wave-front and it takes a while for the wave-front to recover.

3. 64x64 CTUs are big! there are much fewer rows than with H.264 and similar codecs

Because of these stall issues you rarely get the full parallelisation benefit one would expect from row threading. 30%
to 50% of the theoretical perfect threading is typical.

In x265 WPP is enabled by default since it not only improves performance at encode but it also makes it possible for
the decoder to be threaded.

If WPP is disabled by --no-wpp the frame will be encoded in scan order and the entropy overheads will be avoided.
If frame threading is not disabled, the encoder will change the default frame thread count to be higher than if WPP
was enabled. The exact formulas are described in the next section.

4.3 Bonded Task Groups

If a worker thread job has work which can be performed in parallel by many threads, it may allocate a bonded task
group and enlist the help of other idle worker threads from the same thread pool. Those threads will cooperate to
complete the work of the bonded task group and then return to their idle states. The larger and more uniform those
tasks are, the better the bonded task group will perform.

4.3.1 Parallel Mode Analysis

When --pmode is enabled, each CU (at all depths from 64x64 to 8x8) will distribute its analysis work to the thread
pool via a bonded task group. Each analysis job will measure the cost of one prediction for the CU: merge, skip, intra,
inter (2Nx2N, Nx2N, 2NxN, and AMP).

At slower presets, the amount of increased parallelism from pmode is often enough to be able to reduce or disable
frame parallelism while achieving the same overall CPU utilization. Reducing frame threads is often beneficial to
ABR and VBV rate control.

4.3.2 Parallel Motion Estimation

When --pme is enabled all of the analysis functions which perform motion searches to reference frames will distribute
those motion searches to other worker threads via a bonded task group (if more than two motion searches are required).

48 Chapter 4. Threading

http://www.parabolaresearch.com/blog/2013-12-01-hevc-wavefront-animation.html

x265

4.4 Frame Threading

Frame threading is the act of encoding multiple frames at the same time. It is a challenge because each frame will
generally use one or more of the previously encoded frames as motion references and those frames may still be in the
process of being encoded themselves.

Previous encoders such as x264 worked around this problem by limiting the motion search region within these refer-
ence frames to just one macroblock row below the coincident row being encoded. Thus a frame could be encoded at
the same time as its reference frames so long as it stayed one row behind the encode progress of its references (glossing
over a few details).

x265 has the same frame threading mechanism, but we generally have much less frame parallelism to exploit than
x264 because of the size of our CTU rows. For instance, with 1080p video x264 has 68 16x16 macroblock rows
available each frame while x265 only has 17 64x64 CTU rows.

The second extenuating circumstance is the loop filters. The pixels used for motion reference must be processed by
the loop filters and the loop filters cannot run until a full row has been encoded, and it must run a full row behind the
encode process so that the pixels below the row being filtered are available. On top of this, HEVC has two loop filters:
deblocking and SAO, which must be run in series with a row lag between them. When you add up all the row lags
each frame ends up being 3 CTU rows behind its reference frames (the equivalent of 12 macroblock rows for x264).
And keep in mind the wave-front progression pattern; by the time the reference frame finishes the third row of CTUs,
nearly half of the CTUs in the frame may be compressed (depending on the display aspect ratio).

The third extenuating circumstance is that when a frame being encoded becomes blocked by a reference frame row
being available, that frame’s wave-front becomes completely stalled and when the row becomes available again it
can take quite some time for the wave to be restarted, if it ever does. This makes WPP less effective when frame
parallelism is in use.

--merange can have a negative impact on frame parallelism. If the range is too large, more rows of CTU lag must
be added to ensure those pixels are available in the reference frames.

Note: Even though the merange is used to determine the amount of reference pixels that must be available in
the reference frames, the actual motion search is not necessarily centered around the coincident block. The motion
search is actually centered around the motion predictor, but the available pixel area (mvmin, mvmax) is determined by
merange and the interpolation filter half-heights.

When frame threading is disabled, the entirety of all reference frames are always fully available (by definition) and
thus the available pixel area is not restricted at all, and this can sometimes improve compression efficiency. Because of
this, the output of encodes with frame parallelism disabled will not match the output of encodes with frame parallelism
enabled; but when enabled the number of frame threads should have no effect on the output bitstream except when
using ABR or VBV rate control or noise reduction.

When --nr is enabled, the outputs of each number of frame threads will be deterministic but none of them will match
becaue each frame encoder maintains a cumulative noise reduction state.

VBV introduces non-determinism in the encoder, at this point in time, regardless of the amount of frame parallelism.

By default frame parallelism and WPP are enabled together. The number of frame threads used is auto-detected from
the (hyperthreaded) CPU core count, but may be manually specified via --frame-threads

Cores Frames
> 32 6..8
>= 16 5
>= 8 3
>= 4 2

4.4. Frame Threading 49

x265

If WPP is disabled, then the frame thread count defaults to min(cpuCount, ctuRows / 2)

Over-allocating frame threads can be very counter-productive. They each allocate a large amount of memory and
because of the limited number of CTU rows and the reference lag, you generally get limited benefit from adding frame
encoders beyond the auto-detected count, and often the extra frame encoders reduce performance.

Given these considerations, you can understand why the faster presets lower the max CTU size to 32x32 (making
twice as many CTU rows available for WPP and for finer grained frame parallelism) and reduce --merange

Each frame encoder runs in its own thread (allocated separately from the worker pool). This frame thread has some pre-
processing responsibilities and some post-processing responsibilities for each frame, but it spends the bulk of its time
managing the wave-front processing by making CTU rows available to the worker threads when their dependencies
are resolved. The frame encoder threads spend nearly all of their time blocked in one of 4 possible locations:

1. blocked, waiting for a frame to process

2. blocked on a reference frame, waiting for a CTU row of reconstructed and loop-filtered reference pixels to
become available

3. blocked waiting for wave-front completion

4. blocked waiting for the main thread to consume an encoded frame

4.5 Lookahead

The lookahead module of x265 (the lowres pre-encode which determines scene cuts and slice types) uses the thread
pool to distribute the lowres cost analysis to worker threads. It will use bonded task groups to perform batches of frame
cost estimates, and it may optionally use bonded task groups to measure single frame cost estimates using slices. (see
--lookahead-slices)

The main slicetypeDecide() function itself is also performed by a worker thread if your encoder has a thread pool, else
it runs within the context of the thread which calls the x265_encoder_encode().

4.6 SAO

The Sample Adaptive Offset loopfilter has a large effect on encode performance because of the peculiar way it must
be analyzed and coded.

SAO flags and data are encoded at the CTU level before the CTU itself is coded, but SAO analysis (deciding whether
to enable SAO and with what parameters) cannot be performed until that CTU is completely analyzed (reconstructed
pixels are available) as well as the CTUs to the right and below. So in effect the encoder must perform SAO analysis
in a wavefront at least a full row behind the CTU compression wavefront.

This extra latency forces the encoder to save the encode data of every CTU until the entire frame has been analyzed,
at which point a function can code the final slice bitstream with the decided SAO flags and data interleaved between
each CTU. This second pass over the CTUs can be expensive, particularly at large resolutions and high bitrates.

50 Chapter 4. Threading

CHAPTER 5

Preset Options

5.1 Presets

x265 has ten predefined --preset options that optimize the trade-off between encoding speed (encoded frames
per second) and compression efficiency (quality per bit in the bitstream). The default preset is medium. It does
a reasonably good job of finding the best possible quality without spending excessive CPU cycles looking for the
absolute most efficient way to achieve that quality. When you use faster presets, the encoder takes shortcuts to improve
performance at the expense of quality and compression efficiency. When you use slower presets, x265 tests more
encoding options, using more computations to achieve the best quality at your selected bit rate (or in the case of –crf
rate control, the lowest bit rate at the selected quality).

The presets adjust encoder parameters as shown in the following table. Any parameters below that are specified in
your command-line will be changed from the value specified by the preset.

0. ultrafast

1. superfast

2. veryfast

3. faster

4. fast

5. medium (default)

6. slow

7. slower

8. veryslow

9. placebo

preset 0 1 2 3 4 5 6 7 8 9
ctu 32 32 64 64 64 64 64 64 64 64

Continued on next page

51

x265

Table 1 – continued from previous page
preset 0 1 2 3 4 5 6 7 8 9
min-cu-size 16 8 8 8 8 8 8 8 8 8
bframes 3 3 4 4 4 4 4 8 8 8
b-adapt 0 0 0 0 0 2 2 2 2 2
rc-lookahead 5 10 15 15 15 20 25 40 40 60
lookahead-slices 8 8 8 8 8 8 4 1 1 1
scenecut 0 40 40 40 40 40 40 40 40 40
ref 1 1 2 2 3 3 4 5 5 5
limit-refs 0 0 3 3 3 3 3 1 0 0
me dia hex hex hex hex hex star star star star
merange 57 57 57 57 57 57 57 57 57 92
subme 0 1 1 2 2 2 3 4 4 5
rect 0 0 0 0 0 0 1 1 1 1
amp 0 0 0 0 0 0 0 1 1 1
limit-modes 0 0 0 0 0 0 1 1 0 0
max-merge 2 2 2 2 2 2 3 4 5 5
early-skip 1 1 1 1 0 0 0 0 0 0
recursion-skip 1 1 1 1 1 1 1 0 0 0
fast-intra 1 1 1 1 1 0 0 0 0 0
b-intra 0 0 0 0 0 0 0 1 1 1
sao 0 0 1 1 1 1 1 1 1 1
signhide 0 1 1 1 1 1 1 1 1 1
weightp 0 0 1 1 1 1 1 1 1 1
weightb 0 0 0 0 0 0 0 1 1 1
aq-mode 0 0 2 2 2 2 2 2 2 2
cuTree 1 1 1 1 1 1 1 1 1 1
rdLevel 2 2 2 2 2 3 4 6 6 6
rdoq-level 0 0 0 0 0 0 2 2 2 2
tu-intra 1 1 1 1 1 1 1 3 3 4
tu-inter 1 1 1 1 1 1 1 3 3 4
limit-tu 0 0 0 0 0 0 0 4 0 0

5.2 Tuning

There are a few --tune options available, which are applied after the preset.

Note: The psnr and ssim tune options disable all optimizations that sacrafice metric scores for perceived visual quality
(also known as psycho-visual optimizations). By default x265 always tunes for highest perceived visual quality but if
one intends to measure an encode using PSNR or SSIM for the purpose of benchmarking, we highly recommend you
configure x265 to tune for that particular metric.

–tune effect
psnr disables adaptive quant, psy-rd, and cutree
ssim enables adaptive quant auto-mode, disables psy-rd
grain improves retention of film grain. more below
fastdecode no loop filters, no weighted pred, no intra in B
zerolatency no lookahead, no B frames, no cutree
animation improves encode quality for animated content

52 Chapter 5. Preset Options

x265

5.2.1 Film Grain

--tune grain aims to encode grainy content with the best visual quality. The purpose of this option is neither to retain
nor eliminate grain, but prevent noticeable artifacts caused by uneven distribution of grain. --tune grain strongly
restricts algorithms that vary the quantization parameter within and across frames. Tune grain also biases towards
decisions that retain more high frequency components.

• --aq-mode 0

• --cutree 0

• --ipratio 1.1

• --pbratio 1.0

• --qpstep 1

• --sao 0

• --psy-rd 4.0

• --psy-rdoq 10.0

• --recursion-skip 0

It also enables a specialised ratecontrol algorithm --rc-grain that strictly minimises QP fluctuations across frames,
while still allowing the encoder to hit bitrate targets and VBV buffer limits (with a slightly higher margin of error than
normal). It is highly recommended that this algorithm is used only through the --tune grain feature. Overrid-
ing the –tune grain settings might result in grain strobing, especially when enabling features like --aq-mode and
--cutree that modify per-block QPs within a given frame.

5.2.2 Fast Decode

--tune fastdecode disables encoder features which tend to be bottlenecks for the decoder. It is intended for use with
4K content at high bitrates which can cause decoders to struggle. It disables both HEVC loop filters, which tend to be
process bottlenecks:

• --no-deblock

• --no-sao

It disables weighted prediction, which tend to be bandwidth bottlenecks:

• --no-weightp

• --no-weightb

And it disables intra blocks in B frames with --no-b-intra since intra predicted blocks cause serial dependencies
in the decoder.

5.2.3 Zero Latency

There are two halves to the latency problem. There is latency at the decoder and latency at the encoder. --tune
zerolatency removes latency from both sides. The decoder latency is removed by:

• --bframes 0

Encoder latency is removed by:

• --b-adapt 0

• --rc-lookahead 0

5.2. Tuning 53

x265

• --no-scenecut

• --no-cutree

• --frame-threads 1

With all of these settings x265_encoder_encode() will run synchronously, the picture passed as pic_in will be encoded
and returned as NALs. These settings disable frame parallelism, which is an important component for x265 perfor-
mance. If you can tolerate any latency on the encoder, you can increase performance by increasing the number of
frame threads. Each additional frame thread adds one frame of latency.

5.2.4 Animation

--tune animation adjusts encoder settings to optimize the encode quality for animation content without impacting
the encode speed. This is done by:

• --psy-rd 0.4

• --aq-strength 0.4

• --deblock 1:1

• --bframes Increase by 2

54 Chapter 5. Preset Options

CHAPTER 6

Lossless

6.1 Lossless Encoding

x265 can encode HEVC bitstreams that are entirely lossless (the reconstructed images are bit-exact to the source
images) by using the --lossless option. Lossless operation is theoretically simple. Rate control, by definition, is
disabled and the encoder disables all quality metrics since they would only waste CPU cycles. Instead, x265 reports
only a compression factor at the end of the encode.

In HEVC, lossless coding means bypassing both the DCT transforms and bypassing quantization (often referred to as
transquant bypass). Normal predictions are still allowed, so the encoder will find optimal inter or intra predictions and
then losslessly code the residual (with transquant bypass).

All --preset options are capable of generating lossless video streams, but in general the slower the preset the better
the compression ratio (and the slower the encode). Here are some examples:

./x265 ../test-720p.y4m o.bin --preset ultrafast --lossless

... <snip> ...
encoded 721 frames in 238.38s (3.02 fps), 57457.94 kb/s

./x265 ../test-720p.y4m o.bin --preset faster --lossless

... <snip> ...
x265 [info]: lossless compression ratio 3.11::1
encoded 721 frames in 258.46s (2.79 fps), 56787.65 kb/s

./x265 ../test-720p.y4m o.bin --preset slow --lossless

... <snip> ...
x265 [info]: lossless compression ratio 3.36::1
encoded 721 frames in 576.73s (1.25 fps), 52668.25 kb/s

./x265 ../test-720p.y4m o.bin --preset veryslow --lossless
x265 [info]: lossless compression ratio 3.76::1
encoded 721 frames in 6298.22s (0.11 fps), 47008.65 kb/s

Note: In HEVC, only QP=4 is truly lossless quantization, and thus when encoding losslesly x265 uses QP=4 internally

55

x265

in its RDO decisions.

6.2 Near-lossless Encoding

Near-lossless conditions are a quite a bit more interesting. Normal ABR rate control will allow one to scale the bitrate
up to the point where quantization is entirely bypassed (QP <= 4), but even at this point there is a lot of SSIM left on
the table because of the DCT transforms, which are not lossless:

./x265 ../test-720p.y4m o.bin --preset medium --bitrate 40000 --ssim
encoded 721 frames in 326.62s (2.21 fps), 39750.56 kb/s, SSIM Mean Y: 0.9990703 (30.
→˓317 dB)

./x265 ../test-720p.y4m o.bin --preset medium --bitrate 50000 --ssim
encoded 721 frames in 349.27s (2.06 fps), 44326.84 kb/s, SSIM Mean Y: 0.9994134 (32.
→˓316 dB)

./x265 ../test-720p.y4m o.bin --preset medium --bitrate 60000 --ssim
encoded 721 frames in 360.04s (2.00 fps), 45394.50 kb/s, SSIM Mean Y: 0.9994823 (32.
→˓859 dB)

For the encoder to get over this quality plateau, one must enable lossless coding at the CU level with
--cu-lossless. It tells the encoder to evaluate trans-quant bypass as a coding option for each CU, and to pick the
option with the best rate-distortion characteristics.

The --cu-lossless option is very expensive, computationally, and it only has a positive effect when the QP is
extremely low, allowing RDO to spend a large amount of bits to make small improvements to quality. So this option
should only be enabled when you are encoding near-lossless bitstreams:

./x265 ../test-720p.y4m o.bin --preset medium --bitrate 40000 --ssim --cu-lossless
encoded 721 frames in 500.51s (1.44 fps), 40017.10 kb/s, SSIM Mean Y: 0.9997790 (36.
→˓557 dB)

./x265 ../test-720p.y4m o.bin --preset medium --bitrate 50000 --ssim --cu-lossless
encoded 721 frames in 524.60s (1.37 fps), 46083.37 kb/s, SSIM Mean Y: 0.9999432 (42.
→˓456 dB)

./x265 ../test-720p.y4m o.bin --preset medium --bitrate 60000 --ssim --cu-lossless
encoded 721 frames in 523.63s (1.38 fps), 46552.92 kb/s, SSIM Mean Y: 0.9999489 (42.
→˓917 dB)

Note: It is not unusual for bitrate to drop as you increase lossless coding. Having “perfectly coded” reference blocks
reduces residual in later frames. It is quite possible for a near-lossless encode to spend more bits than a lossless encode.

Enabling psycho-visual rate distortion will improve lossless coding. --psy-rd influences the RDO decisions in
favor of energy (detail) preservation over bit cost and results in more blocks being losslessly coded. Our psy-rd feature
is not yet assembly optimized, so this makes the encodes run even slower:

./x265 ../test-720p.y4m o.bin --preset medium --bitrate 40000 --ssim --cu-lossless --
→˓psy-rd 1.0
encoded 721 frames in 581.83s (1.24 fps), 40112.15 kb/s, SSIM Mean Y: 0.9998632 (38.
→˓638 dB)

(continues on next page)

56 Chapter 6. Lossless

x265

(continued from previous page)

./x265 ../test-720p.y4m o.bin --preset medium --bitrate 50000 --ssim --cu-lossless --
→˓psy-rd 1.0
encoded 721 frames in 587.54s (1.23 fps), 46284.55 kb/s, SSIM Mean Y: 0.9999663 (44.
→˓721 dB)

./x265 ../test-720p.y4m o.bin --preset medium --bitrate 60000 --ssim --cu-lossless --
→˓psy-rd 1.0
encoded 721 frames in 592.93s (1.22 fps), 46839.51 kb/s, SSIM Mean Y: 0.9999707 (45.
→˓334 dB)

--cu-lossless will also be more effective at slower presets which perform RDO at more levels and thus may find
smaller blocks that would benefit from lossless coding:

./x265 ../test-720p.y4m o.bin --preset veryslow --bitrate 40000 --ssim --cu-lossless
encoded 721 frames in 12969.25s (0.06 fps), 37331.96 kb/s, SSIM Mean Y: 0.9998108 (37.
→˓231 dB)

./x265 ../test-720p.y4m o.bin --preset veryslow --bitrate 50000 --ssim --cu-lossless
encoded 721 frames in 46217.84s (0.05 fps), 42976.28 kb/s, SSIM Mean Y: 0.9999482 (42.
→˓856 dB)

./x265 ../test-720p.y4m o.bin --preset veryslow --bitrate 60000 --ssim --cu-lossless
encoded 721 frames in 13738.17s (0.05 fps), 43864.21 kb/s, SSIM Mean Y: 0.9999633 (44.
→˓348 dB)

And with psy-rd and a slow preset together, very high SSIMs are possible:

./x265 ../test-720p.y4m o.bin --preset veryslow --bitrate 40000 --ssim --cu-lossless -
→˓-psy-rd 1.0
encoded 721 frames in 11675.81s (0.06 fps), 37819.45 kb/s, SSIM Mean Y: 0.9999181 (40.
→˓867 dB)

./x265 ../test-720p.y4m o.bin --preset veryslow --bitrate 50000 --ssim --cu-lossless -
→˓-psy-rd 1.0
encoded 721 frames in 12414.56s (0.06 fps), 42815.75 kb/s, SSIM Mean Y: 0.9999758 (46.
→˓168 dB)

./x265 ../test-720p.y4m o.bin --preset veryslow --bitrate 60000 --ssim --cu-lossless -
→˓-psy-rd 1.0
encoded 721 frames in 11684.89s (0.06 fps), 43324.48 kb/s, SSIM Mean Y: 0.9999793 (46.
→˓835 dB)

It’s important to note in the end that it is easier (less work) for the encoder to encode the video losslessly than it is to
encode it near-losslessly. If the encoder knows up front the encode must be lossless, it does not need to evaluate any
lossy coding methods. The encoder only needs to find the most efficient prediction for each block and then entropy
code the residual.

It is not feasible for --cu-lossless to turn itself on when the encoder determines it is encoding a near-lossless
bitstream (ie: when rate control nearly disables all quantization) because the feature requires a flag to be enabled in the
stream headers. At the time the stream headers are being coded we do not know whether --cu-lossless would be
a help or a hinder. If very few or no blocks end up being coded as lossless, then having the feature enabled is a net loss
in compression efficiency because it adds a flag that must be coded for every CU. So ignoring even the performance
aspects of the feature, it can be a compression loss if enabled without being used. So it is up to the user to only enable
this feature when they are coding at near-lossless quality.

6.2. Near-lossless Encoding 57

x265

6.3 Transform Skip

A somewhat related feature, --tskip tells the encoder to evaluate transform-skip (bypass DCT but with quantization
still enabled) when coding small 4x4 transform blocks. This feature is intended to improve the coding efficiency of
screen content (aka: text on a screen) and is not really intended for lossless coding. This feature should only be enabled
if the content has a lot of very sharp edges in it, and is mostly unrelated to lossless coding.

58 Chapter 6. Lossless

CHAPTER 7

SVT-HEVC

x265 has support for open source HEVC encoder SVT-HEVC and can generate SVT-HEVC compliant bitstreams.
SVT-HEVC encoder can be enabled at run time using --svt. Since SVT-HEVC params/CLI are not exposed outside,
it has to be configured only via x265 CLI options. The API’s of SVT-HEVC are accessed through x265’s API so even
library users of x265 can avail this feature, under the condition that x265_param_parse() API should be used for
all param assignment. Params assigned outside of x265_param_parse() API wont’t be mapped to SVT-HEVC. This
document describes the steps needed to compile x265 with SVT-HEVC and CLI options mapping between x265 and
SVT-HEVC.

7.1 Build Steps

This section describes the build steps to be followed to link SVT-HEVC with x265.

SVT-HEVC

1. Clone SVT-HEVC (say at path “/home/app/”) and build it (follow the build steps in its README file)

2. Once build is successful, binaries can be found inside the Bin folder at its root directory (“/home/app/SVT-
HEVC/Bin/Release/”)

x265

1. Set environmental variables SVT_HEVC_INCLUDE_DIR and SVT_HEVC_LIBRARY_DIR to help x265 locate SVT-HEVC. For example:

• export SVT_HEVC_INCLUDE_DIR = /home/app/SVT-HEVC/Source/API/

• export SVT_HEVC_LIBRARY_DIR = /home/app/SVT-HEVC/Bin/Release/

2. Enable the cmake option ENABLE_SVT_HEVC and continue the normal build process

59

https://01.org/svt
https://github.com/intel/SVT-HEVC

x265

7.2 CLI options Mapping

Once x265 is compiled with SVT-HEVC, SVT-HEVC encoder can be invoked at run time using --svt. --svt can
be added anywhere in the command line, x265 application will automatically parse it first and maps all other x265
CLI’s present in the command line to SVT-HEVC encoder options internally and configures the same. Below table
shows the actual mapping of x265 CLI options to SVT-HEVC encoder options (Name as shown in SVT-HEVC’s
sample configuration file)

x265 CLI option SVT-HEVC Encoder Option Range
--input InputFile Any String
--output StreamFile Any String
--input-depth EncoderBitDepth [8, 10]
--input-res SourceWidth [64 - 8192]

SourceHeight [64 - 8192]
--frames FrameToBeEncoded Any Positive Integer
--fps FrameRateNumerator Any Positive Integer

FrameRateDenominator Any Positive Integer
--profile Profile [main, main10]
--level-idc Level

[1, 2, 2.1, 3, 3.1, 4, 4.1, 5, 5.1, 5.2,
6, 6.1, 6.2]

--high-tier Tier
--qpmin MinQpAllowed [0 - 50]
--qpmax MaxQpAllowed [0 - 51]
--rc-lookahead LookAheadDistance [0 - 250]
--scenecut SceneChangeDetection Any Positive Integer
--open-gop IntraRefreshType
--deblock LoopFilterDisable Any Integer
--sao SAO
--keyint IntraPeriod [(-2) - 255]
--constrained-intra ConstrainedIntra
--vui-timing-info VideoUsabilityInfo
--hdr HighDynamicRangeInput
--aud AccessUnitDelimeter
--qp RateControlMode RateControlMode = 0

QP [0 - 51]
--bitrate RateControlMode RateControlMode = 1

TargetBitrate Any Positive Integer
--interlace InterlacedVideo [0 - 2]
--pools TargetSocket, LogicalProcessors Maximum NUMA Nodes = 2
--master-display MasteringDisplayColorVolume Any String
--max-cll maxCLL, maxFALL Any Positve Integer
--dolby-vision-profile DolbyVisionProfile [8.1]
--dolby-vision-rpu DolbyVisionRpuFile Any String
--nalu-file NaluFile Any String
--tune zerolatency LatencyMode
--svt-search-width SearchAreaWidth [1 - 256]
--svt-search-height SearchAreaHeight [1 - 256]
--svt-hierarchical-level HierarchicalLevels [0 - 3]
--svt-base-layer-switch-modeBaseLayerSwitchMode [0, 1]

Continued on next page

60 Chapter 7. SVT-HEVC

x265

Table 1 – continued from previous page
x265 CLI option SVT-HEVC Encoder Option Range
--svt-pred-struct PredStructure [0 - 2]
--svt-hme HME, UseDefaultMeHme
--svt-compressed-ten-bit-formatCompressedTenBitFormat
--svt-speed-control SpeedControlFlag
--svt-fps-in-vps FpsInVps

x265 CLI options which are not present in the above table will have no effect if SVT-HEVC is enabled and would
be ignored silently with a warning. If SVT-HEVC is enabled, accepted input range of x265 CLI options will change,
because it follows SVT-HEVC encoder’s specs, which are mentioned in the Range section in the above table. Options
starting with prefix “–svt-” are newly added to fecilitate access to the features of SVT-HEVC which couldn’t be
mapped to the existing x265 CLI’s. So these options will have effect only if SVT-HEVC is enabled and would be
ignored with default x265 encode.

7.3 Preset & Tune Options Mapping

x265 has 10 presets from ultrafast to placebo whereas SVT-HEVC has 13 presets. Use --svt-preset-tuner
with Placebo preset to access the additional 3 presets of SVT-HEVC. Note that --svt-preset-tuner should be
used only if SVT-HEVC is enabled and only with Placebo preset, would be ignored otherwise. Below table shows the
actual mapping of presets,

x265 Preset SVT-HEVC Preset
Ultrafast 12
Superfast 11
Veryfast 10
Faster 9
Fast 8
Medium 7
Slow 6
Slower 5
Veryslow 4
Placebo 3
Placebo --svt-preset-tuner 0 0
Placebo --svt-preset-tuner 1 1
Placebo --svt-preset-tuner 2 2

x265 has 5 tune modes (psnr, ssim, grain, zero-latency, animation) whereas SVT-HEVC has only 3 tune modes (0 -
visual quality, 1 - PSNR / SSIM and 2 - VMAF). Below table shows the mapping of tune modes,

x265 Tune Modes SVT-HEVC Tune Modes
vmaf 2
psnr 1
ssim 1
grain 0
fastdecode 0
zerolatency 0
animation 0

Note that [1.option:–tune animation is also mapped to “LatencyMode” of SVT-HEVC.] 2.option: ‘–tune’ vmaf is not
supported in x265, its under development.

7.3. Preset & Tune Options Mapping 61

x265

62 Chapter 7. SVT-HEVC

CHAPTER 8

Release Notes

8.1 Version 3.1

Release date - 18th June, 2019.

8.1.1 New features

1. x265 can invoke SVT-HEVC library for encoding through --svt.

2. x265 can now accept interlaced inputs directly (no need to separate fields), and sends it to the encoder with
proper fps and frame-size through --field.

3. --fades can detect and handle fade-in regions. This option will force I-slice and initialize RC history for the
brightest frame after fade-in.

8.1.2 API changes

1. A new flag to signal MasterDisplayParams and maxCll/Fall separately

8.1.3 Encoder enhancements

1. Improved the performance of inter-refine level 1 by skipping the evaluation of smaller CUs when the current
block is decided as “skip” by the save mode.

2. New AVX2 primitives to improve the performance of encodes that enable --ssim-rd.

3. Improved performance in medium preset with negligible loss in quality.

63

x265

8.1.4 Bug fixes

1. Bug fixes for zones.

2. Fixed wrap-around from MV structure overflow occurred around 8K pixels or over.

3. Fixed issues in configuring cbQpOffset and crQpOffset for 444 input

4. Fixed cutree offset computation in 2nd pass encodes.

8.1.5 Known issues

1. AVX512 main12 asm disabling.

2. Inconsistent output with 2-pass due to cutree offset sharing.

8.2 Version 3.0

Release date - 23/01/2019

8.2.1 New features

1. option:: ‘–dolby-vision-profile <integer|float>’ generates bitstreams confirming to the specified Dolby Vision
profile. Currently profile 5, profile 8.1 and profile 8.2 enabled, Default 0 (disabled)

2. option:: ‘–dolby-vision-rpu’ File containing Dolby Vision RPU metadata. If given, x265’s Dolby Vision metadata parser will fill the RPU field of input pictures with the metadata
read from the file. The library will interleave access units with RPUs in the bitstream. Default NULL
(disabled).

3. option:: ‘–zonefile <filename>’ specifies a text file which contains the boundaries of the zones where each of
zones are configurable.

4. option:: ‘–qp-adaptation-range’ Delta-QP range by QP adaptation based on a psycho-visual model. Default 1.0.

5. option:: ‘–refine-ctu-distortion <0/1>’ store/normalize ctu distortion in analysis-save/load. Default 0.

6. Experimental feature option:: ‘–hevc-aq’ enables adaptive quantization It scales the quantization step size
according to the spatial activity of one coding unit relative to frame average spatial activity. This AQ
method utilizes the minimum variance of sub-unit in each coding unit to represent the coding unit’s spatial
complexity.

8.2.2 Encoder enhancements

1. Preset: change param defaults for veryslow and slower preset. Replace slower preset with defaults used in
veryslow preset and change param defaults in veryslow preset as per experimental results.

2. AQ: change default AQ mode to auto-variance

3. Cutree offset reuse: restricted to analysis reuse-level 10 for analysis-save -> analysis-load

4. Tune: introduce –tune animation option which improves encode quality for animated content

5. Reuse CU depth for B frame and allow I, P frame to follow x265 depth decision

64 Chapter 8. Release Notes

x265

8.2.3 Bug fixes

1. RC: fix rowStat computation in const-vbv

2. Dynamic-refine: fix memory reset size.

3. Fix Issue #442: linking issue on non x86 platform

4. Encoder: Do not include CLL SEI message if empty

5. Fix issue #441 build error in VMAF lib

8.3 Version 2.9

Release date - 05/10/2018

8.3.1 New features

1. Support for chunked encoding

--chunk-start and --chunk-end Frames preceding first frame of chunk in display order will be en-
coded, however, they will be discarded in the bitstream. Frames following last frame of the chunk in display
order will be used in taking lookahead decisions, but, they will not be encoded. This feature can be enabled only
in closed GOP structures. Default disabled.

2. Support for HDR10+ version 1 SEI messages.

8.3.2 Encoder enhancements

1. Create API function for allocating and freeing x265_analysis_data.

2. CEA 608/708 support: Read SEI messages from text file and encode it using userSEI message.

8.3.3 Bug fixes

1. Disable noise reduction when vbv is enabled.

2. Support minLuma and maxLuma values changed by the commandline.

8.4 Version 2.8

Release date - 21/05/2018

8.4.1 New features

1. --asm avx512 used to enable AVX-512 in x265. Default disabled. For 4K main10 high-quality encoding,
we are seeing good gains; for other resolutions and presets, we don’t recommend using this setting for now.

2. --dynamic-refine dynamically switches between different inter refine levels. Default disabled. It is
recommended to use :option:‘–refine-intra 4’ with dynamic refinement for a better trade-off between en-
code efficiency and performance than using static refinement.

8.3. Version 2.9 65

x265

3. --single-sei Encode SEI messages in a single NAL unit instead of multiple NAL units. Default disabled.

4. --max-ausize-factor controls the maximum AU size defined in HEVC specification. It represents
the percentage of maximum AU size used. Default is 1.

5. VMAF (Video Multi-Method Assessment Fusion) Added VMAF support for objective quality measurement of
a video sequence. Enable cmake option ENABLE_LIBVMAF to report per frame and aggregate VMAF score.
The frame level VMAF score does not include temporal scores. This is supported only on linux for now.

8.4.2 Encoder enhancements

1. Introduced refine-intra level 4 to improve quality.

2. Support for HLG-graded content and pic_struct in SEI message.

8.4.3 Bug Fixes

1. Fix 32 bit build error (using CMAKE GUI) in Linux.

2. Fix 32 bit build error for asm primitives.

3. Fix build error on mac OS.

4. Fix VBV Lookahead in analysis load to achieve target bitrate.

8.5 Version 2.7

Release date - 21st Feb, 2018.

8.5.1 New features

1. --gop-lookahead can be used to extend the gop boundary(set by –keyint). The GOP will be extended, if a
scene-cut frame is found within this many number of frames.

2. Support for RADL pictures added in x265. --radl can be used to decide number of RADL pictures preceding
the IDR picture.

8.5.2 Encoder enhancements

1. Moved from YASM to NASM assembler. Supports NASM assembler version 2.13 and greater.

2. Enable analysis save and load in a single run. Introduces two new cli options –analysis-save <filename> and
–analysis-load <filename>.

3. Comply to HDR10+ LLC specification.

4. Reduced x265 build time by more than 50% by re-factoring ipfilter.asm.

66 Chapter 8. Release Notes

x265

8.5.3 Bug fixes

1. Fixed inconsistent output issue in deblock filter and –const-vbv.

2. Fixed Mac OS build warnings.

3. Fixed inconsistency in pass-2 when weightp and cutree are enabled.

4. Fixed deadlock issue due to dropping of BREF frames, while forcing slice types through qp file.

8.6 Version 2.6

Release date - 29th November, 2017.

8.6.1 New features

1. x265 can now refine analysis from a previous HEVC encode (using options --refine-inter, and
--refine-intra), or a previous AVC encode (using option --refine-mv-type). The previous en-
code’s information can be packaged using the x265_analysis_data_t data field available in the x265_picture
object.

2. Basic support for segmented (or chunked) encoding added with --vbv-end that can specify the status of CPB
at the end of a segment. String this together with --vbv-init to encode a title as chunks while maintaining
VBV compliance!

3. --force-flush can be used to trigger a premature flush of the encoder. This option is beneficial when input
is known to be bursty, and may be at a rate slower than the encoder.

4. Experimental feature --lowpass-dct that uses truncated DCT for transformation.

8.6.2 Encoder enhancements

1. Slice-parallel mode gets a significant boost in performance, particularly in low-latency mode.

2. x265 now officially supported on VS2017.

3. x265 now supports all depths from mono0 to mono16 for Y4M format.

8.6.3 API changes

1. Options that modified PPS dynamically (--opt-qp-pps and --opt-ref-list-length-pps) are now
disabled by default to enable users to save bits by not sending headers. If these options are enabled, headers
have to be repeated for every GOP.

2. Rate-control and analysis parameters can dynamically be reconfigured simultaneously via the
x265_encoder_reconfig API.

3. New API functions to extract intermediate information such as slice-type, scenecut information, reference
frames, etc. are now available. This information may be beneficial to integrating applications that are attempting
to perform content-adaptive encoding. Refer to documentation on x265_get_slicetype_poc_and_scenecut, and
x265_get_ref_frame_list for more details and suggested usage.

4. A new API to pass supplemental CTU information to x265 to influence analysis decisions has been added. Refer
to documentation on x265_encoder_ctu_info for more details.

8.6. Version 2.6 67

x265

8.6.4 Bug fixes

1. Bug fixes when --slices is used with VBV settings.

2. Minor memory leak fixed for HDR10+ builds, and default x265 when pools option is specified.

3. HDR10+ bug fix to remove dependence on poc counter to select meta-data information.

8.7 Version 2.5

Release date - 13th July, 2017.

8.7.1 Encoder enhancements

1. Improved grain handling with --tune grain option by throttling VBV operations to limit QP jumps.

2. Frame threads are now decided based on number of threads specified in the --pools, as opposed to the number
of hardware threads available. The mapping was also adjusted to improve quality of the encodes with minimal
impact to performance.

3. CSV logging feature (enabled by --csv) is now part of the library; it was previously part of the x265 appli-
cation. Applications that integrate libx265 can now extract frame level statistics for their encodes by exercising
this option in the library.

4. Globals that track min and max CU sizes, number of slices, and other parameters have now been moved into
instance-specific variables. Consequently, applications that invoke multiple instances of x265 library are no
longer restricted to use the same settings for these parameter options across the multiple instances.

5. x265 can now generate a seprate library that exports the HDR10+ parsing API. Other libraries that wish to use
this API may do so by linking against this library. Enable ENABLE_HDR10_PLUS in CMake options and build
to generate this library.

6. SEA motion search receives a 10% performance boost from AVX2 optimization of its kernels.

7. The CSV log is now more elaborate with additional fields such as PU statistics, average-min-max luma and
chroma values, etc. Refer to documentation of --csv for details of all fields.

8. x86inc.asm cleaned-up for improved instruction handling.

8.7.2 API changes

1. New API x265_encoder_ctu_info() introduced to specify suggested partition sizes for various CTUs in a frame.
To be used in conjunction with --ctu-info to react to the specified partitions appropriately.

2. Rate-control statistics passed through the x265_picture object for an incoming frame are now used by the en-
coder.

3. Options to scale, reuse, and refine analysis for incoming analysis shared through the x265_analysis_data field in
x265_picture for runs that use --analysis-reuse-mode load; use options --scale, --refine-mv ,
--refine-inter, and --refine-intra to explore.

4. VBV now has a deterministic mode. Use --const-vbv to exercise.

68 Chapter 8. Release Notes

x265

8.7.3 Bug fixes

1. Several fixes for HDR10+ parsing code including incompatibility with user-specific SEI, removal of warnings,
linking issues in linux, etc.

2. SEI messages for HDR10 repeated every keyint when HDR options (--hdr-opt, --master-display)
specified.

8.8 Version 2.4

Release date - 22nd April, 2017.

8.8.1 Encoder enhancements

1. HDR10+ supported. Dynamic metadata may be either supplied as a bitstream via the userSEI field of
x265_picture, or as a json jile that can be parsed by x265 and inserted into the bitstream; use --dhdr10-info
to specify json file name, and --dhdr10-opt to enable optimization of inserting tone-map information only
at IDR frames, or when the tone map information changes.

2. Lambda tables for 8, 10, and 12-bit encoding revised, resulting in significant enhancement to subjective visual
quality.

3. Enhanced HDR10 encoding with HDR-specific QP optimzations for chroma, and luma planes of WCG content
enabled; use --hdr-opt to activate.

4. Ability to accept analysis information from other previous encodes (that may or may not be x265), and selec-
tively reuse and refine analysis for encoding subsequent passes enabled with the --refine-level option.

5. Slow and veryslow presets receive a 20% speed boost at iso-quality by enabling the --limit-tu option.

6. The bitrate target for x265 can now be dynamically reconfigured via the reconfigure API.

7. Performance optimized SAO algorithm introduced via the --limit-sao option; seeing 10% speed benefits
at faster presets.

8.8.2 API changes

1. x265_reconfigure API now also accepts rate-control parameters for dynamic reconfiguration.

2. Several additions to data fields in x265_analysis to support --refine-level: see x265.h for more details.

8.8.3 Bug fixes

1. Avoid negative offsets in x265 lambda2 table with SAO enabled.

2. Fix mingw32 build error.

3. Seek now enabled for pipe input, in addition to file-based input

4. Fix issue of statically linking core-utils not working in linux.

5. Fix visual artifacts with --multi-pass-opt-distortion with VBV.

6. Fix bufferFill stats reported in csv.

8.8. Version 2.4 69

x265

8.9 Version 2.3

Release date - 15th February, 2017.

8.9.1 Encoder enhancements

1. New SSIM-based RD-cost computation for improved visual quality, and efficiency; use --ssim-rd to exer-
cise.

2. Multi-pass encoding can now share analysis information from prior passes (in addition to rate-control infor-
mation) to improve performance and quality of subsequent passes; to your multi-pass command-lines that
use the --pass option, add --multi-pass-opt-distortion to share distortion information, and
--multi-pass-opt-analysis to share other analysis information.

3. A dedicated thread pool for lookahead can now be specified with --lookahead-threads.

4. option:–dynamic-rd dynamically increase analysis in areas where the bitrate is being capped by VBV; works for
both CRF and ABR encodes with VBV settings.

5. The number of bits used to signal the delta-QP can be optimized with the --opt-cu-delta-qp option;
found to be useful in some scenarios for lower bitrate targets.

6. Experimental feature option:–aq-motion adds new QP offsets based on relative motion of a block with respect
to the movement of the frame.

8.9.2 API changes

1. Reconfigure API now supports signalling new scaling lists.

2. x265 application’s csv functionality now reports time (in milliseconds) taken to encode each frame.

3. --strict-cbr enables stricter bitrate adherence by adding filler bits when achieved bitrate is lower than the
target; earlier, it was only reacting when the achieved rate was higher.

4. --hdr can be used to ensure that max-cll and max-fall values are always signaled (even if 0,0).

8.9.3 Bug fixes

1. Fixed incorrect HW thread counting on MacOS platform.

2. Fixed scaling lists support for 4:4:4 videos.

3. Inconsistent output fix for --opt-qp-pss by removing last slice’s QP from cost calculation.

4. VTune profiling (enabled using ENABLE_VTUNE CMake option) now also works with 2017 VTune builds.

8.10 Version 2.2

Release date - 26th December, 2016.

70 Chapter 8. Release Notes

x265

8.10.1 Encoder enhancements

1. Enhancements to TU selection algorithm with early-outs for improved speed; use --limit-tu to exercise.

2. New motion search method SEA (Successive Elimination Algorithm) supported now as :option: –me 4

3. Bit-stream optimizations to improve fields in PPS and SPS for bit-rate savings through --opt-qp-pps,
--opt-ref-list-length-pps, and --multi-pass-opt-rps.

4. Enabled using VBV constraints when encoding without WPP.

5. All param options dumped in SEI packet in bitstream when info selected.

6. x265 now supports POWERPC-based systems. Several key functions also have optimized ALTIVEC kernels.

8.10.2 API changes

1. Options to disable SEI and optional-VUI messages from bitstream made more descriptive.

2. New option --scenecut-bias to enable controlling bias to mark scene-cuts via cli.

3. Support mono and mono16 color spaces for y4m input.

4. --min-cu-size of 64 no-longer supported for reasons of visual quality (was crashing earlier anyways.)

5. API for CSV now expects version string for better integration of x265 into other applications.

8.10.3 Bug fixes

1. Several fixes to slice-based encoding.

2. --log2-max-poc-lsb’s range limited according to HEVC spec.

3. Restrict MVs to within legal boundaries when encoding.

8.11 Version 2.1

Release date - 27th September, 2016

8.11.1 Encoder enhancements

1. Support for qg-size of 8

2. Support for inserting non-IDR I-frames at scenecuts and when running with settings for fixed-GOP (min-keyint
= max-keyint)

3. Experimental support for slice-parallelism.

8.11.2 API changes

1. Encode user-define SEI messages passed in through x265_picture object.

2. Disable SEI and VUI messages from the bitstream

3. Specify qpmin and qpmax

4. Control number of bits to encode POC.

8.11. Version 2.1 71

x265

8.11.3 Bug fixes

1. QP fluctuation fix for first B-frame in mini-GOP for 2-pass encoding with tune-grain.

2. Assembly fix for crashes in 32-bit from dct_sse4.

3. Threadpool creation fix in windows platform.

8.12 Version 2.0

Release date - 13th July, 2016

8.12.1 New Features

1. uhd-bd: Enable Ultra-HD Bluray support

2. rskip: Enables skipping recursion to analyze lower CU sizes using heuristics at different rd-levels. Provides
good visual quality gains at the highest quality presets.

3. rc-grain: Enables a new ratecontrol mode specifically for grainy content. Strictly prevents QP oscillations within
and between frames to avoid grain fluctuations.

4. tune grain: A fully refactored and improved option to encode film grain content including QP control as well as
analysis options.

5. asm: ARM assembly is now enabled by default, native or cross compiled builds supported on armv6 and later
systems.

8.12.2 API and Key Behaviour Changes

1. x265_rc_stats added to x265_picture, containing all RC decision points for that frame

2. PTL: high tier is now allowed by default, chosen only if necessary

3. multi-pass: First pass now uses slow-firstpass by default, enabling better RC decisions in future passes

4. pools: fix behaviour on multi-socketed Windows systems, provide more flexibility in determining thread and
pool counts

5. ABR: improve bits allocation in the first few frames, abr reset, vbv and cutree improved

8.12.3 Misc

1. An SSIM calculation bug was corrected

8.13 Version 1.9

Release date - 29th January, 2016

72 Chapter 8. Release Notes

x265

8.13.1 New Features

1. Quant offsets: This feature allows block level quantization offsets to be specified for every frame. An API-only
feature.

2. –intra-refresh: Keyframes can be replaced by a moving column of intra blocks in non-keyframes.

3. –limit-modes: Intelligently restricts mode analysis.

4. –max-luma and –min-luma for luma clipping, optional for HDR use-cases

5. Emergency denoising is now enabled by default in very low bitrate, VBV encodes

8.13.2 API Changes

1. x265_frame_stats returns many additional fields: maxCLL, maxFALL, residual energy, scenecut and latency
logging

2. –qpfile now supports frametype ‘K”

3. x265 now allows CRF ratecontrol in pass N (N greater than or equal to 2)

4. Chroma subsampling format YUV 4:0:0 is now fully supported and tested

8.13.3 Presets and Performance

1. Recently added features lookahead-slices, limit-modes, limit-refs have been enabled by default for applicable
presets.

2. The default psy-rd strength has been increased to 2.0

3. Multi-socket machines now use a single pool of threads that can work cross-socket.

8.14 Version 1.8

Release date - 10th August, 2015

8.14.1 API Changes

1. Experimental support for Main12 is now enabled. Partial assembly support exists.

2. Main12 and Intra/Still picture profiles are now supported. Still picture profile is detected based on
x265_param::totalFrames.

3. Three classes of encoding statistics are now available through the API. a) x265_stats - contains encoding statistics,
available through x265_encoder_get_stats() b) x265_frame_stats and x265_cu_stats - contains frame encoding statis-
tics, available through recon x265_picture 4. –csv a) x265_encoder_log() is now deprecated b) x265_param::csvfn is
also deprecated 5. –log-level now controls only console logging, frame level console logging has been removed. 6.
Support added for new color transfer characteristic ARIB STD-B67

8.14. Version 1.8 73

x265

8.14.2 New Features

1. limit-refs: This feature limits the references analysed for individual CUS. Provides a nice tradeoff between
efficiency and performance.

2. aq-mode 3: A new aq-mode that provides additional biasing for low-light conditions.

3. An improved scene cut detection logic that allows ratecontrol to manage visual quality at fade-ins and fade-outs
better.

8.14.3 Preset and Tune Options

1. tune grain: Increases psyRdoq strength to 10.0, and rdoq-level to 2.

2. qg-size: Default value changed to 32.

74 Chapter 8. Release Notes

Index

Symbols
-allow-non-conformance,

-no-allow-non-conformance
command line option, 12

-amp, -no-amp
command line option, 13

-analysis-load <filename>
command line option, 14

-analysis-reuse-file <filename>
command line option, 14

-analysis-reuse-level <1..10>
command line option, 14

-analysis-save <filename>
command line option, 14

-analyze-src-pics,
-no-analyze-src-pics

command line option, 19
-annexb, -no-annexb

command line option, 32
-aq-mode <0|1|2|3>

command line option, 23
-aq-motion, -no-aq-motion

command line option, 24
-aq-strength <float>

command line option, 24
-asm <integer:false:string>, -no-asm

command line option, 6
-atc-sei <integer>

command line option, 31
-aud, -no-aud

command line option, 32
-b-adapt <integer>

command line option, 22
-b-intra, -no-b-intra

command line option, 14
-b-pyramid, -no-b-pyramid

command line option, 22
-bframe-bias <integer>

command line option, 22

-bframes, -b <0..16>
command line option, 22

-bitrate <integer>
command line option, 22

-cbqpoffs <integer>
command line option, 25

-chromaloc <0..5>
command line option, 30

-chunk-end <integer>
command line option, 10

-chunk-start <integer>
command line option, 10

-cll, -no-cll
command line option, 31

-colormatrix <integer|string>
command line option, 30

-colorprim <integer|string>
command line option, 29

-const-vbv, -no-const-vbv
command line option, 26

-constrained-intra,
-no-constrained-intra

command line option, 19
-copy-pic, -no-copy-pic

command line option, 8
-cplxblur <float>

command line option, 26
-crf <0..51.0>

command line option, 22
-crf-max <0..51.0>

command line option, 22
-crf-min <0..51.0>

command line option, 22
-crqpoffs <integer>

command line option, 25
-csv <filename>

command line option, 4
-csv-log-level <integer>

command line option, 5
-ctu, -s <64|32|16>

75

x265

command line option, 13
-ctu-info <0, 1, 2, 4, 6>

command line option, 21
-cu-lossless, -no-cu-lossless

command line option, 14
-cutree, -no-cutree

command line option, 24
-deblock=<int>:<int>, -no-deblock

command line option, 27
-dhdr10-info <filename>

command line option, 31
-dhdr10-opt, -no-dhdr10-opt

command line option, 31
-display-window <left,top,right,bottom>

command line option, 28
-dither

command line option, 9
-dolby-vision-profile <integer|float>

command line option, 32
-dolby-vision-rpu <filename>

command line option, 32
-dynamic-rd <0..4>

command line option, 17
-dynamic-refine, -no-dynamic-refine

command line option, 16
-early-skip, -no-early-skip

command line option, 14
-fades, -no-fades

command line option, 22
-fast-intra, -no-fast-intra

command line option, 14
-field, -no-field

command line option, 10
-force-flush <integer>

command line option, 22
-fps <integer|float|numerator/denominator>

command line option, 9
-frame-threads, -F <integer>

command line option, 6
-frames <integer>

command line option, 9
-frames, -f <integer>

command line option, 10
-gop-lookahead <integer>

command line option, 21
-hash <integer>

command line option, 32
-hdr, -no-hdr

command line option, 31
-hdr-opt, -no-hdr-opt

command line option, 31
-help, -h

command line option, 3
-hevc-aq

command line option, 24
-high-tier, -no-high-tier

command line option, 11
-hrd, -no-hrd

command line option, 32
-hrd-concat, -no-hrd-concat

command line option, 32
-idr-recovery-sei,

-no-idr-recovery-sei
command line option, 33

-info, -no-info
command line option, 32

-input <filename>
command line option, 9

-input-csp <integer|string>
command line option, 9

-input-depth <integer>
command line option, 9

-input-res <wxh>
command line option, 9

-interlace <false|tff|bff>,
-no-interlace

command line option, 9
-intra-refresh

command line option, 21
-ipratio <float>

command line option, 25
-keyint, -I <integer>

command line option, 20
-lambda-file <filename>

command line option, 27
-level-idc <integer|float>

command line option, 11
-limit-modes, -no-limit-modes

command line option, 13
-limit-refs <0|1|2|3>

command line option, 13
-limit-sao, -no-limit-sao

command line option, 28
-limit-tu <0..4>

command line option, 16
-log-level <integer|string>

command line option, 4
-log2-max-poc-lsb <integer>

command line option, 33
-lookahead-slices <0..16>

command line option, 21
-lookahead-threads <integer>

command line option, 21
-lossless, -no-lossless

command line option, 23
-lowpass-dct

command line option, 33
-master-display <string>

76 Index

x265

command line option, 30
-max-ausize-factor <float>

command line option, 27
-max-cll <string>

command line option, 30
-max-luma <integer>

command line option, 31
-max-merge <1..5>

command line option, 18
-max-tu-size <32|16|8|4>

command line option, 17
-me <integer|string>

command line option, 18
-merange <integer>

command line option, 18
-min-cu-size <32|16|8>

command line option, 13
-min-keyint, -i <integer>

command line option, 20
-min-luma <integer>

command line option, 31
-multi-pass-opt-analysis,

-no-multi-pass-opt-analysis
command line option, 25

-multi-pass-opt-distortion,
-no-multi-pass-opt-distortion

command line option, 25
-multi-pass-opt-rps,

-no-multi-pass-opt-rps
command line option, 33

-nalu-file <filename>
command line option, 31

-no-progress
command line option, 4

-nr-intra <integer>, -nr-inter
<integer>

command line option, 17
-open-gop, -no-open-gop

command line option, 20
-opt-cu-delta-qp, -no-opt-cu-delta-qp

command line option, 33
-opt-qp-pps, -no-opt-qp-pps

command line option, 33
-opt-ref-list-length-pps,

-no-opt-ref-list-length-pps
command line option, 33

-output, -o <filename>
command line option, 10

-output-depth, -D 8|10|12
command line option, 10

-overscan <show|crop>
command line option, 28

-pass <integer>
command line option, 24

-pbratio <float>
command line option, 25

-pic-struct <integer>
command line option, 31

-pme, -no-pme
command line option, 7

-pmode, -no-pmode
command line option, 7

-pools <string>, -numa-pools <string>
command line option, 6

-preset, -p <integer|string>
command line option, 8

-profile, -P <string>
command line option, 10

-psnr, -no-psnr
command line option, 6

-psy-rd <float>
command line option, 20

-psy-rdoq <float>
command line option, 20

-qblur <float>
command line option, 26

-qcomp <float>
command line option, 25

-qg-size <64|32|16|8>
command line option, 24

-qp, -q <integer>
command line option, 23

-qp-adaptation-range
command line option, 24

-qpfile <filename>
command line option, 26

-qpmax <integer>
command line option, 26

-qpmin <integer>
command line option, 26

-qpstep <integer>
command line option, 26

-radl <integer>
command line option, 20

-range <full|limited>
command line option, 29

-rc-grain, -no-rc-grain
command line option, 26

-rc-lookahead <integer>
command line option, 21

-rd <1..6>
command line option, 12

-rd-refine, -no-rd-refine
command line option, 14

-rdoq-level <0|1|2>, -no-rdoq-level
command line option, 16

-rdpenalty <0..2>
command line option, 17

Index 77

x265

-recon, -r <filename>
command line option, 34

-recon-depth <integer>
command line option, 34

-recon-y4m-exec <string>
command line option, 34

-rect, -no-rect
command line option, 13

-ref <1..16>
command line option, 11

-refine-ctu-distortion <0/1>
command line option, 15

-refine-inter <0..3>
command line option, 15

-refine-intra <0..4>
command line option, 15

-refine-mv
command line option, 16

-refine-mv-type <string>
command line option, 15

-repeat-headers, -no-repeat-headers
command line option, 32

-rskip, -no-rskip
command line option, 14

-sao, -no-sao
command line option, 27

-sao-non-deblock, -no-sao-non-deblock
command line option, 27

-sar <integer|w:h>
command line option, 28

-scale-factor
command line option, 15

-scaling-list <filename>
command line option, 27

-scenecut <integer>, -no-scenecut
command line option, 20

-scenecut-bias <0..100.0>
command line option, 20

-seek <integer>
command line option, 10

-signhide, -no-signhide
command line option, 26

-single-sei, -no-single-sei
command line option, 33

-slices <integer>
command line option, 8

-slow-firstpass, -no-slow-firstpass
command line option, 24

-splitrd-skip, -no-splitrd-skip
command line option, 14

-ssim, -no-ssim
command line option, 5

-ssim-rd, -no-ssim-rd
command line option, 17

-stats <filename>
command line option, 24

-strict-cbr, -no-strict-cbr
command line option, 25

-strong-intra-smoothing,
-no-strong-intra-smoothing

command line option, 19
-subme, -m <0..7>

command line option, 18
-svt, -no-svt

command line option, 34
-svt-base-layer-switch-mode <integer>

command line option, 35
-svt-compressed-ten-bit-format,

-no-svt-compressed-ten-bit-format
command line option, 34

-svt-fps-in-vps, -no-svt-fps-in-vps
command line option, 35

-svt-hierarchical-level <integer>
command line option, 35

-svt-hme, -no-svt-hme
command line option, 34

-svt-pred-struct <integer>
command line option, 35

-svt-preset-tuner <integer>
command line option, 34

-svt-search-height <integer>
command line option, 34

-svt-search-width <integer>
command line option, 34

-svt-speed-control,
-no-svt-speed-control

command line option, 34
-temporal-layers,-no-temporal-layers

command line option, 32
-temporal-mvp, -no-temporal-mvp

command line option, 18
-transfer <integer|string>

command line option, 29
-tskip, -no-tskip

command line option, 17
-tskip-fast, -no-tskip-fast

command line option, 14
-tu-inter-depth <1..4>

command line option, 16
-tu-intra-depth <1..4>

command line option, 16
-tune, -t <string>

command line option, 8
-uhd-bd

command line option, 12
-vbv-bufsize <integer>

command line option, 22
-vbv-end <float>

78 Index

x265

command line option, 23
-vbv-end-fr-adj <float>

command line option, 23
-vbv-init <float>

command line option, 23
-vbv-maxrate <integer>

command line option, 23
-version, -V

command line option, 3
-videoformat <integer|string>

command line option, 28
-vui-hrd-info, -no-vui-hrd-info

command line option, 33
-vui-timing-info, -no-vui-timing-info

command line option, 33
-weightb, -no-weightb

command line option, 19
-weightp, -w, -no-weightp

command line option, 19
-wpp, -no-wpp

command line option, 7
-y4m

command line option, 9
-zonefile <filename>

command line option, 26
-zones <zone0>/<zone1>/...

command line option, 26

C
command line option

-allow-non-conformance,
-no-allow-non-conformance, 12

-amp, -no-amp, 13
-analysis-load <filename>, 14
-analysis-reuse-file <filename>, 14
-analysis-reuse-level <1..10>, 14
-analysis-save <filename>, 14
-analyze-src-pics,

-no-analyze-src-pics, 19
-annexb, -no-annexb, 32
-aq-mode <0|1|2|3>, 23
-aq-motion, -no-aq-motion, 24
-aq-strength <float>, 24
-asm <integer:false:string>,

-no-asm, 6
-atc-sei <integer>, 31
-aud, -no-aud, 32
-b-adapt <integer>, 22
-b-intra, -no-b-intra, 14
-b-pyramid, -no-b-pyramid, 22
-bframe-bias <integer>, 22
-bframes, -b <0..16>, 22
-bitrate <integer>, 22
-cbqpoffs <integer>, 25

-chromaloc <0..5>, 30
-chunk-end <integer>, 10
-chunk-start <integer>, 10
-cll, -no-cll, 31
-colormatrix <integer|string>, 30
-colorprim <integer|string>, 29
-const-vbv, -no-const-vbv, 26
-constrained-intra,

-no-constrained-intra, 19
-copy-pic, -no-copy-pic, 8
-cplxblur <float>, 26
-crf <0..51.0>, 22
-crf-max <0..51.0>, 22
-crf-min <0..51.0>, 22
-crqpoffs <integer>, 25
-csv <filename>, 4
-csv-log-level <integer>, 5
-ctu, -s <64|32|16>, 13
-ctu-info <0, 1, 2, 4, 6>, 21
-cu-lossless, -no-cu-lossless, 14
-cutree, -no-cutree, 24
-deblock=<int>:<int>, -no-deblock,

27
-dhdr10-info <filename>, 31
-dhdr10-opt, -no-dhdr10-opt, 31
-display-window

<left,top,right,bottom>, 28
-dither, 9
-dolby-vision-profile

<integer|float>, 32
-dolby-vision-rpu <filename>, 32
-dynamic-rd <0..4>, 17
-dynamic-refine,

-no-dynamic-refine, 16
-early-skip, -no-early-skip, 14
-fades, -no-fades, 22
-fast-intra, -no-fast-intra, 14
-field, -no-field, 10
-force-flush <integer>, 22
-fps <integer|float|numerator/denominator>,

9
-frame-threads, -F <integer>, 6
-frames <integer>, 9
-frames, -f <integer>, 10
-gop-lookahead <integer>, 21
-hash <integer>, 32
-hdr, -no-hdr, 31
-hdr-opt, -no-hdr-opt, 31
-help, -h, 3
-hevc-aq, 24
-high-tier, -no-high-tier, 11
-hrd, -no-hrd, 32
-hrd-concat, -no-hrd-concat, 32

Index 79

x265

-idr-recovery-sei,
-no-idr-recovery-sei, 33

-info, -no-info, 32
-input <filename>, 9
-input-csp <integer|string>, 9
-input-depth <integer>, 9
-input-res <wxh>, 9
-interlace <false|tff|bff>,

-no-interlace, 9
-intra-refresh, 21
-ipratio <float>, 25
-keyint, -I <integer>, 20
-lambda-file <filename>, 27
-level-idc <integer|float>, 11
-limit-modes, -no-limit-modes, 13
-limit-refs <0|1|2|3>, 13
-limit-sao, -no-limit-sao, 28
-limit-tu <0..4>, 16
-log-level <integer|string>, 4
-log2-max-poc-lsb <integer>, 33
-lookahead-slices <0..16>, 21
-lookahead-threads <integer>, 21
-lossless, -no-lossless, 23
-lowpass-dct, 33
-master-display <string>, 30
-max-ausize-factor <float>, 27
-max-cll <string>, 30
-max-luma <integer>, 31
-max-merge <1..5>, 18
-max-tu-size <32|16|8|4>, 17
-me <integer|string>, 18
-merange <integer>, 18
-min-cu-size <32|16|8>, 13
-min-keyint, -i <integer>, 20
-min-luma <integer>, 31
-multi-pass-opt-analysis,

-no-multi-pass-opt-analysis,
25

-multi-pass-opt-distortion,
-no-multi-pass-opt-distortion, 25

-multi-pass-opt-rps,
-no-multi-pass-opt-rps, 33

-nalu-file <filename>, 31
-no-progress, 4
-nr-intra <integer>, -nr-inter

<integer>, 17
-open-gop, -no-open-gop, 20
-opt-cu-delta-qp,

-no-opt-cu-delta-qp, 33
-opt-qp-pps, -no-opt-qp-pps, 33
-opt-ref-list-length-pps,

-no-opt-ref-list-length-pps,
33

-output, -o <filename>, 10

-output-depth, -D 8|10|12, 10
-overscan <show|crop>, 28
-pass <integer>, 24
-pbratio <float>, 25
-pic-struct <integer>, 31
-pme, -no-pme, 7
-pmode, -no-pmode, 7
-pools <string>, -numa-pools

<string>, 6
-preset, -p <integer|string>, 8
-profile, -P <string>, 10
-psnr, -no-psnr, 6
-psy-rd <float>, 20
-psy-rdoq <float>, 20
-qblur <float>, 26
-qcomp <float>, 25
-qg-size <64|32|16|8>, 24
-qp, -q <integer>, 23
-qp-adaptation-range, 24
-qpfile <filename>, 26
-qpmax <integer>, 26
-qpmin <integer>, 26
-qpstep <integer>, 26
-radl <integer>, 20
-range <full|limited>, 29
-rc-grain, -no-rc-grain, 26
-rc-lookahead <integer>, 21
-rd <1..6>, 12
-rd-refine, -no-rd-refine, 14
-rdoq-level <0|1|2>,

-no-rdoq-level, 16
-rdpenalty <0..2>, 17
-recon, -r <filename>, 34
-recon-depth <integer>, 34
-recon-y4m-exec <string>, 34
-rect, -no-rect, 13
-ref <1..16>, 11
-refine-ctu-distortion <0/1>, 15
-refine-inter <0..3>, 15
-refine-intra <0..4>, 15
-refine-mv, 16
-refine-mv-type <string>, 15
-repeat-headers,

-no-repeat-headers, 32
-rskip, -no-rskip, 14
-sao, -no-sao, 27
-sao-non-deblock,

-no-sao-non-deblock, 27
-sar <integer|w:h>, 28
-scale-factor, 15
-scaling-list <filename>, 27
-scenecut <integer>, -no-scenecut,

20
-scenecut-bias <0..100.0>, 20

80 Index

x265

-seek <integer>, 10
-signhide, -no-signhide, 26
-single-sei, -no-single-sei, 33
-slices <integer>, 8
-slow-firstpass,

-no-slow-firstpass, 24
-splitrd-skip, -no-splitrd-skip, 14
-ssim, -no-ssim, 5
-ssim-rd, -no-ssim-rd, 17
-stats <filename>, 24
-strict-cbr, -no-strict-cbr, 25
-strong-intra-smoothing,

-no-strong-intra-smoothing, 19
-subme, -m <0..7>, 18
-svt, -no-svt, 34
-svt-base-layer-switch-mode

<integer>, 35
-svt-compressed-ten-bit-format,

-no-svt-compressed-ten-bit-format,
34

-svt-fps-in-vps,
-no-svt-fps-in-vps, 35

-svt-hierarchical-level <integer>,
35

-svt-hme, -no-svt-hme, 34
-svt-pred-struct <integer>, 35
-svt-preset-tuner <integer>, 34
-svt-search-height <integer>, 34
-svt-search-width <integer>, 34
-svt-speed-control,

-no-svt-speed-control, 34
-temporal-layers,-no-temporal-layers,

32
-temporal-mvp, -no-temporal-mvp, 18
-transfer <integer|string>, 29
-tskip, -no-tskip, 17
-tskip-fast, -no-tskip-fast, 14
-tu-inter-depth <1..4>, 16
-tu-intra-depth <1..4>, 16
-tune, -t <string>, 8
-uhd-bd, 12
-vbv-bufsize <integer>, 22
-vbv-end <float>, 23
-vbv-end-fr-adj <float>, 23
-vbv-init <float>, 23
-vbv-maxrate <integer>, 23
-version, -V, 3
-videoformat <integer|string>, 28
-vui-hrd-info, -no-vui-hrd-info, 33
-vui-timing-info,

-no-vui-timing-info, 33
-weightb, -no-weightb, 19
-weightp, -w, -no-weightp, 19
-wpp, -no-wpp, 7

-y4m, 9
-zonefile <filename>, 26
-zones <zone0>/<zone1>/..., 26
Emit RecoveryPoint info as sei in

bitstream for each IDR frame.
Default disabled., 33

Emit SEI messages in a single NAL
unit instead of multiple NALs.
Default disabled., 33

When HRD SEI is enabled the HM
decoder will throw a warning., 33

E
Emit RecoveryPoint info as sei in

bitstream for each IDR frame.
Default disabled.

command line option, 33
Emit SEI messages in a single NAL

unit instead of multiple NALs.
Default disabled.

command line option, 33

W
When HRD SEI is enabled the HM decoder

will throw a warning.
command line option, 33

Index 81

	Introduction
	About HEVC
	About x265
	LEGAL NOTICES

	Command Line Options
	Executable Options
	Logging/Statistic Options
	Performance Options
	Input/Output File Options
	Profile, Level, Tier
	Mode decision / Analysis
	Temporal / motion search options
	Spatial/intra options
	Psycho-visual options
	Slice decision options
	Quality, rate control and rate distortion options
	Quantization Options
	Loop filters
	VUI (Video Usability Information) options
	Bitstream options
	DCT Approximations
	Debugging options
	SVT-HEVC Encoder Options

	Application Programming Interface
	Introduction
	Build Considerations
	Encoder
	Param
	Pictures
	Analysis Buffers
	Encode Process
	Cleanup
	VMAF (Video Multi-Method Assessment Fusion)
	Multi-library Interface

	Threading
	Thread Pools
	Wavefront Parallel Processing
	Bonded Task Groups
	Frame Threading
	Lookahead
	SAO

	Preset Options
	Presets
	Tuning

	Lossless
	Lossless Encoding
	Near-lossless Encoding
	Transform Skip

	SVT-HEVC
	Build Steps
	CLI options Mapping
	Preset & Tune Options Mapping

	Release Notes
	Version 3.1
	Version 3.0
	Version 2.9
	Version 2.8
	Version 2.7
	Version 2.6
	Version 2.5
	Version 2.4
	Version 2.3
	Version 2.2
	Version 2.1
	Version 2.0
	Version 1.9
	Version 1.8

	Index

